

AUTHOR/TEAM MEMBERS: Jade Harris 11SDD

MENTOR/TEACHER: Adam Leserve

HANGMAN
 PROJECT DEVELO PMENT REPORT

The 21st century is an advancing era, and mainstream games which were once played on paper have

begun to require digitisation in order to remain relevant to the screens and capabilities of today. The

Hangman Project Development Report endeavours to document the gamification process of the age-old

‘hangman’, imperative to improving spelling and literacy skills in young audiences, continuing its

educational benefits in modern times. The project follows the structured approach of software design

and development to support the proposed application solution while utilising a distinct ‘dark’ modern

aesthetic. To effectively implement the structured approach, appropriate design tools, maintenance,

evaluation and programming constructs have been employed throughout the project.

JADE HARRIS | 11SDD

2

CONTENTS

Aims and Objectives .. 3

Purpose ... 3

Security ... 4

Portability .. 4

Networkability ... 5

Overview of System .. 5

Data and Information .. 5

Software Structure .. 5

Defining and Understanding the Problem .. 6

Timing and Sequencing of Project .. 6

Identification of the problem .. 6

Ideas generation ... 7

Interface design .. 8

Communication with others involved in the proposed system .. 10

Consideration of social and ethical issues .. 10

Modelling your chosen Solution ... 11

Planning and Designing ... 18

Software Development Approach .. 18

Algorithm Creation .. 19

Implementing .. 27

Development of Code ... 27

Implementation Errors .. 29

Testing of code .. 35

Testing and Evaluation .. 36

Testing ... 36

Evaluation ... 43

Maintenance of the software ... 46

HANGMAN | PROJECT DEVELOPMENT REPORT

JADE HARRIS | 11SDD

3

REQUIREMENTS REPORT

Aims and Objectives

Purpose

This project endeavours to demonstrate competency and understanding of the C# programming

language through the documentation and development of a working graphical user-interface

game of Hangman. Through the utilisation of coding constructs, graphical interface design,

documentation and the structured programming approach, a Windows Form application solution

will be produced.

 Functionality

The basic functionality of the solution uses only the mouse to emulate the gameplay of

traditional Hangman, continuing to improve spelling and literacy skills in its users. Much like the

classic version, an educational experience is delivered by allowing the player to attempt to guess

letters in order to reveal a randomly selected word. If a guess is contained in the hidden word,

the letter will appear in its correct position. If the guess is incorrect, a body part of the hangman

is drawn. The player has 11 guesses and if they successfully reveal the word before the hangman

has been completed, the user has won and should be congratulated. However, if the hangman is

complete before the word is guessed, then the player has run out of attempts and lost, a

condolence message offered. At any time, the player should be able to start a new game,

however, this feature must be protected from accidental use with an appropriate mechanism.

 Interface Usability

As a graphical user-interface solution, the program provides an engaging and intuitive user

experience which supports the functionality necessary for its gameplay. The proposed software

solution is a Windows Form application which requires only the mouse as input hardware,

alongside a computer with a Windows-based operating system and a monitor. The interface

begins with a title screen that has a start button, establishing a positive first impression. Once

the start button has been pressed, a brief loading screen captures the player’s attention and

creates a seamless flow into the gameplay. The gameplay interface then allows the user to select

a letter from an alphabetical on-screen keyboard made from the class Button. Their chosen letter

is entered into an instance of TextBox which contains the current letter that will be guessed.

However, the player must click on a separate ‘submit’ instance of Button class to actually guess

whatever letter is in the TextBox. A red delete object of class Button is also featured in the on-

screen keyboard to allow the user to remove any guess. If they wish to choose a different letter

to what is currently in the textbox (as whatever is contained only becomes a guess once the

submit button is clicked), the user can simply click on a different letter on the keyboard and it

AIMS AND OBJECTIVES | REQUIREMENTS REPORT

JADE HARRIS | 11SDD

4

will replace their current guess. These submit and delete buttons prevent a letter from

accidentally being selected, and declutter the interface, greatly enhancing user-experience. Once

a guess is made, another ‘loading screen’ appears, to give a lifelike property to the AI through

an illusion that the computer is ‘thinking’. This increases suspense and provides a seamless

transition between interfaces. If the guessed letter is not in the randomly selected word, an

animated drawing of the hangman body part appears in the interface to indicate that their guess

was incorrect. This is an engaging way to display the hangman and a ‘next’ button appears with

the animation to allow the player to make their next guess (when they have sufficiently watched

the .gif). When the user returns to the interface, a static image of the hangman with the body

part just drawn is featured. The player has 11 guesses until the hangman has been completed.

Alternatively, if the player makes a correct guess, then the letter appears in its correct position in

the hidden word. Whether the guess was correct or incorrect, the interface then disables the

button for that letter so that the user is aware of and can no longer select letters which have

previously been guessed. This design choice reduces the interface clutter of a separate section to

display already-guessed letters. To further enhance usability, a button which allows a new game

to be launched at any time is featured in the on-screen keyboard but protected from accidental

use by a confirmation message. The interface also features a distinct form icon, so that the

application can be identified in the toolbar when the game is minimised. The simplistic, intuitive

aesthetic promotes ease of use and enhances user experience.

Security

Overall, the Hangman application contains minimal security issues as it does not involve the storing

of personal data or expose any vulnerabilities of a computer system. In particular, the information

stored in the provided external file is not sensitive and is publicly available, therefore there are no

security risks involved. Additionally, by using the File.ReadAllLines method, the stream is

automatically opened and closed. However, appropriate caution should still be taken regarding the

text file - say if the user chose to alter the word list file to include their personal passwords.

Additionally, if the capabilities of the application were extended, for instance implementing a

scoreboard which enabled users to enter their name, further security issues could arise. If the word

list file or another file was to store such personally identifiable or sensitive information, the

sequential access method should be replaced with a random access alternative such as a database.

Further, cryptology could increase security and reduce likelihood of interception by unauthorized

users.

Portability

Windows Form applications have limited portability, functioning solely on Windows desktops and

laptops as they require a Windows-based operating system. However, the versatility of traditional

Hangman gameplay lends itself to being extended in the future to work in browser or mobile. In

terms of the implementation itself, as Windows Form applications are not compatible with Android,

MacOS and iOS, and a web browser doesn’t directly interpret C#, broadening platform compatibility

would either require complete recoding or use of a different framework. This could involve

extending the existing codebase with a C# web framework such as ASP.NET, allowing use in a web

browser which broadens access scope to Mac, Linux and Windows. For mobile and Android

JADE HARRIS | 11SDD

5

platforms, the .NET framework Xamarin could be leveraged to great effect. As the C# codebase

already exists, effort can be significantly minimised by utilising a framework which already

implements C#. Overall, this application has rich potential for portability.

Networkability

The developed Hangman solution does not contain any network operability as it is an application

designed to execute on the user’s independent device and its current gameplay is single-player only.

However, given the mechanics of traditional hangman, the application’s functionality has potential

to be adjusted for networkability by introducing multiplayer. Perhaps it could emulate the

traditional gameplay of Hangman where one player selects a word which the other guesses, or

rather a more contemporary style as a race to guess a

random word. This would require the use of a web

framework as discussed in the previous ‘portability’ section

such as ASP.Net. The use of a web server which

communicates with the players’ client machines would

enable the application’s output to display on each monitor

while obfuscating the code which could allow cheating.

This client-server topology can be viewed to the right:

Overview of System

Data and Information

The nature of the data used and produced by Hangman is centered around the functionality of its

gameplay, involving user input for the letters and program output for the monitor display. The

application is designed to receive input from the user’s mouse-click to trigger click-events on

buttons. These events then output information on the monitor, displaying the letter which the user

has selected in the textbox. Once the program has received a mouse input on the submit button, if

the letter was contained in the word, then the system will display the letter in its correct position. If

the guess was incorrect, the application will produce information for the graphical picture box. This

picture box is influenced by the data of how many guesses have been made. The computer also

stores data of the player’s state through the use of global variables – the number of guesses

remaining and whether the user has won or lost. Through continued mouse inputs, if the player has

revealed the entire word then the program will display a congratulatory system MessageBox.

Whereas if the player has failed to guess the correct word after 11 letters are selected, a condolence

message will be displayed. A message box is also produced if a click-event is triggered on the reset

button.

Software Structure

The structure of the proposed software solution is a Windows Form application which utilises an

external text file in conjunction with the use of programming constructs, data structures and

graphical interface instances. The program uses classes to build the interface, an instance of class

OVERVIEW OF SYSTEM | REQUIREMENTS REPORT

JADE HARRIS | 11SDD

6

Button for each letter on the keyboard, TextBox to display the hidden word and the user’s current

guess, and PictureBox to display the hangman. These are combined with the use of an external text

file and the System.IO namespace to store the list of possible words. Numerous of these list and

array data structures are included throughout. Additionally, the System.Threading namespace

creates the pause in the ‘computer thinking’ effect with its Thread.Sleep() method. This software

structure creates an aesthetic and intuitive working Hangman application with an engaging and

distinct user experience.

THE BODY OF PROJECT DEVELOPMENT
REPORT (PDR)

Defining and Understanding the Problem

 Timing and Sequencing of Project

The below Gantt chart illustrates the time frame of the project and clearly define application milestones.

Identification of the problem

Identifying the problem involves articulating the problem that the application must solve.

Typically, the problem would be identified through interviews with the stakeholders. However, a

thorough description of the problem has been provided which can be succinctly articulated into

the following points:

DEFINING AND UNDERSTANDING THE PROBLEM | PDR BODY

ARROWS INDICATE

DEPENDENCY

JADE HARRIS | 11SDD

7

HANGMAN ‘ORGANIC’

This solution was the most plausible and organic solution to

the problem, balancing traditional gameplay with Windows

Form capabilities.

❖ A sequential file would be provided with the

application, filled with 200 words separated by a

comma. The line is read into the program and split

at each comma into an array.

❖ The random class would select a random integer

that would solve the problem of randomly

selecting a word.

❖ A for loop would produce a string which replaces

the letters with ‘_’ for the placeholders. For

aesthetics, a separate function would then add a

space between each placeholder underscore

before the hidden word is displayed.

❖ An on-screen keyboard. The player can make a

guess by selecting a letter and to prevent

accidental guesses, they can select a different

letter which will replace their guess. This letter can

be changed but once they click the submit button,

the current letter in the textbox will become their

guess and checked against the hidden word.

❖ A solution to display the used letters was to

disable the button for that letter.

❖ If the letter matches a letter in the word, the

placeholder underscore at that point will be

replaced by the letter the user guessed by splitting

the target word into a character array and

replacing the item in the index.

❖ To display a body part if an incorrect guess is

made, a switch case will make a separate picture

box visible with the new body part added.

❖ A possible solution for protecting the reset button

was an extremely user-friendly confirmation

message box.

HANGMAN ‘POSTMODERN’

This solution closely resembles the ‘organic’

hangman version, however, features arguably

more distinct solutions to the problem.

❖ Using labels instead of underscores to

represent the placeholders

❖ Instead of making separate picture

boxes visible depending on the

number of guesses left, the program

could simply change the contents of a

single image box accordingly using

Properties Resources

❖ Headset and audio involvement to

create an engaging and immersive

experience. For instance, when a

letter is selected the program makes

a beeping sound. Additionally, C#

provides the ability for an audio file

to be included in the directly which

can be played on command. This

could be used to emphasize the

players loss or congratulate the

player’s victory.

❖ A possible solution for protecting the

reset button was a unique idea where

the player could type the word reset

with the on-screen keyboard and the

feature would trigger.

❖ To replace the placeholder with the

correctly guessed letter, a more

readable .Insert() and .Remove()

method could be used instead.

→ Produce a working graphical user-interface game of Hangman, or alternatively Snowman,

designed to run in a Windows form application

→ Randomly select a word from a list of words residing in an external text file which the player

must guess. This should be hidden.

→ If the user guesses an incorrect letter, each body part is to appear or disappear

→ If the user makes a correct guess, the letter/s must appear in their location in the chosen word

→ Already used letters must be displayed on the screen

→ If a player successfully solves the word, the game will provide a congratulatory message

→ If a player runs out of guesses and the final body part appears or disappears (if Snowman was

selected) a condolence message will appear

→ A button should be accessible that allows a new game to be played at any time but must be

protected from accidental use

→ The project must follow the structured approach and its appropriate documentation in a PDR

Ideas generation

While there were obviously numerous solutions to elements of the entire problem, for instance

how to choose a random word, these were categorised into three primary solutions which

could have been pursued:

SNOWMAN

This solution entailed the choice of the less

confronting game of ‘Snowman’.

❖ To create a random word, rather than read

from a populated sequential file, this

option would extract the HTML data from

a webpage and read the lines as separate

items in an array. This would provide a

larger word pool.

❖ A randomly generated number would

become the index for a word in the array

and then that word would become the

hidden word.

❖ This word would be concealed under

numerous underscores as placeholders for

each letter.

❖ The player could make a guess by typing

any letter on their hardware keyboard and

providing the letter hadn’t been guessed,

it would automatically be submitted.

❖ An interesting idea for the Snowman

melting was to use multiple picture boxes

with animated .gif’s. A switch case would

allow each to become visible and play

when the appropriate part disappeared.

❖ The congratulatory message would be a

large gif with a puddle (snowman melted)

and the words ‘YOU LOSE’. If the player

won, a .gif with ‘YOU WIN’ would be

displayed.

❖ A possible solution to the restart button

was a button where the first click would

activate a timer and the buttons opacity

would gradually decrease. If the player

double clicked the button before 30

seconds, then that would be interpreted as

a confirmation and the program would

reset.

JADE HARRIS | 11SDD

8

In the end, no one solution was selected, instead a combination of all three categories

contributed to the ‘balanced’ final product. The cohesive benefits of each category were

extracted and implemented in the final application. The evaluation of the advantages and

disadvantages of each solution which formed the final product can be seen below:

The final idea is comprised of the advantages from these three main ideas. While originally a single

category was going to be chosen from the three, this decision to incorporate the advantages of each was

preferred as it enabled the program to have the benefits of three different perspectives.

SNOWMAN

ADVANTAGES (USED IN SOLUTION)

SNOWMAN

+ Selecting the random word by

generating a random number and using

it as an index was a clean and effective

solution

+ Underscores as placeholders

resemble the traditional hangman and

are a universal indicator of the game

DISADVANTAGES

- Extracting HTML from dictionary

website was a unique idea, however,

poses many security and legal issues

- Animated gif idea was definitely

interesting and unique. However, the

graphic of a snowman melting was

overly ambitious.

- Considering the project’s scope, using

timers and manipulating opacity in

Windows Form applications to protect

the restart button is ambiguous and

convoluted for the user

‘ORGANIC’ HANGMAN

ADVANTAGES (USED IN SOLUTION)

SNOWMAN

+ Reading from a sequential file was the

initial requirement provided, and although

the client stated either method could work

(reading site HTML), for legal reasons an

external text file is safer. Also, 200 words is

plenty enough for the program.

+ A for loop specifically can be used to

expand on the previous idea of generating

underscores as the placeholders in

‘Snowman’

+ An on-screen keyboard provides substance

to the application interface, creating a more

immersive user-experience. It also solves

the other problem of allowing the user to

see which letters they have already chosen.

The keyboard button could simply be

disabled.

+ Switch case to determine which picture

the picture box is changed to is a clean and

efficient ideas

+ Reset button protection simply being a

pop-up dialogue box is extremely user-

friendly

+ Function which would add spaces between

each placeholder underscore

DISADVANTAGES

- As a method to reveal the letter, breaking

the placeholder into an array of chars and

then changing the character at the index

where the two characters match is overly

complicated – even to explain.

SNOWMAN

ADVANTAGES (USED IN SOLUTION)

SNOWMAN

+ Use of the .Insert() and .Remove()

methods are an extremely simple and

clean alternative to reveal the correct

letters

+ By leveraging the Properties.Resources

method to change the contents of a

single image box, the application

designer can remain a lot neater (rather

than having layered image boxes). This

allows managing errors to be a lot

simpler. Additionally, changing which

images is in a textbox is a lot less tedious

than setting the visibility of multiple.

DISADVANTAGES

- Using labels seemed an obvious and

intuitive solution to the hidden word

problem. However, the limited style

options of labels weren’t entirely suited

to an aesthetic and consistent user-

experience. This includes the restricted

font size of the text and the inability to

centre the placeholders.

- While a unique idea to make the game

more immersive was to include audio

with Beeps, this reduces the inclusivity of

the application. The program’s full

experience is limited for low-income

households who may not be able to

afford a headset. It also could cause ear

pains to player’s with sensitive hearing.

- The idea of implementing the restart

command into the textbox is

undoubtably unique, but impractical

especially if RESTART is the target word.

JADE HARRIS | 11SDD

9

Interface design

This section presents ideas for the chosen user-interface design to improve understanding of the

user-experience. While the application only uses one form, the Hangman application is

comprised of the central ‘gameplay’ interface, a ‘loading screen’ interface, a ‘cut-screen’

interface and a ‘loss’ interface:

The illusion of these separate interfaces is achieved by hiding specific elements - as detailed in

the ‘implementing’ section - and creates a distinct and immersive user experience.

The staticImage box (opposed to the.gifs) displays how many guesses the player
has left without the distracting animation of the .gif. This feature is symbolic of the
traditional game of hangman and allows the player to make an informed guess. Its

incorporation in the main interface also justifies the purpose of the cut-screen
animation which can be seen to ‘draw’ the image displayed here.

placeholderDisplay is a textbox which shows the hidden target word and
any revealed letters. Its central position serves to produce salience to

emphasize its importance

This is the logo/icon of the
application and is featured on
the program title screen and

documentation. This could also
be replaced with a brand or

stakeholder logo.

The animatedImage picture box which contains a .gif which serves to create a cut-screen
effect. This immerses the player and contributes to a quality user-experience.

The loadingScreen
textbox gains a dot

every 5 milliseconds,
creating a ‘thinking’

loading screen effect to
seamlessly transition
between interfaces

‘

The correctWord textbox only appears if the player has lost
and notifies the user of the target word which they failed to

guess.

The taskbar icon allows the program to be easily identifiable when minimised

JADE HARRIS | 11SDD

10

Communication with others involved in the proposed system

While application development should undeniably utilise regular stakeholder feedback and

external communication, due to the conditions of this project as an assignment and the thorough

description of the problem provided, completion was primarily independent. However, allocated

sessions of work in class enabled the project mentor/client to constantly remain in the process

and provide valuable suggestions. Any design queries and functionality questions were

immediately raised to ensure the product was as close to the envisioned program as possible,

and adjustments were made accordingly. By aligning application development and testing with

these crucial feedback sessions, the client remained involved throughout the process and their

feedback could shape the algorithms and software solution.

Although the project was completed solo, occasional collaboration was also conducted with

surrounding classmate developers to gain a different perspective from their solutions to the

problem. It also enabled a more effective and evaluated program to be reached. Further, a brief

questionnaire was conducted with my family to select the most aesthetic and intuitive user-

interface and colours – where black and purple were seen as the most striking. As well, some of

the errors faced during development (detailed in the ‘implementing errors’ section) required

communication by reading forums by the broader coding community to find an appropriate

solution. Specifically, this was leveraged in the .gif implementation.

Overall, as the client will communicate with the developer in the classroom beyond this

assignment, development and refinement of the application can continue.

Consideration of social and ethical issues

Overall, the proposed application has reasonably minimal social and ethical impact in relation to

intellectual property, ethical consideration and inclusivity. Each Hangman illustration and the

application interface was hand-drawn in Adobe Photoshop. This avoids any copyright breaches

as Adobe products have licencing for commercial use. However, the .ico file for the application

icon, while sourced from a site which enabled its commercial use, appeared to be featured on

another site as well which contained the same icon except under a personal use licence. This

poses a unique ethical and legal consideration. However, I believe the source which enabled

commercial use was the original source.

The social impact of the application involves more considerations. Design choices which

considered inclusivity was crucial. The on-screen keyboard enabled the letters of the keys to be

bigger. Such feature could be extended by providing an option to decrease and increase font

size. This allows physically disadvantaged players to select the letters more easily as well as

visually impaired users to see the letters easier. Additionally, the gameplay mechanism to submit

the guess independently to choosing a letter broadens usability for users who may struggle with

reading, by enabling them to envision the letter. As mentioned, it also reduces pressure for

players who may struggle with dexterity.

JADE HARRIS | 11SDD

11

However, considering the scope of the project, adjustments for all backgrounds were not viable

to be implemented. The project does undoubtably have potential for these improvements

though. For a visually impaired user, the game could integrate audio files of the letter chosen

and potentially dictate the placeholders if a letter is revealed or which body part was drawn if

the guess was incorrect. The code and computer system could be adjusted for different inputs if

a braille keyboard was used. In terms of cultural diversity, in the application’s current state the

word file could be adjusted to other languages. However, changing the external text file is not

obvious, and the current interface with its reset and delete buttons would continue to remain in

English. These do have potential to be translated. By integrating an option to choose a language

at the beginning of the Hangman, cultural diversity could easily be promoted. The application

does contain minor instances of secondary notation specific to Western cultures, such as red for

delete, which is less inclusive to differing cultural backgrounds. However, in ratio comparison the

application has already intentionally minimised use of symbolic colours and symbols to reduce

exclusivity and further improvements are viable and reasonably minor.

Another social and ethical impact is the premise of hangman, potentially considered

inappropriate for younger users. The graphics may be seen to promote violence by viewing a

figure being hung and dying, particularly in a country where capital punishment is illegal. If the

project had a broader scope, this could be overcome by changing the graphical animations to a

Snowman melting and providing a parental option to unlock ‘hangman mode’. Additionally, for

younger uses a difficulty setting could be implemented which could change the length of words

chosen and increase the number of guesses.

While social, legal and ethical implications were considered explored throughout the

application’s design, the solution has clear potential to further promote inclusivity which is

greatly advantageous to the celebration of diversity in education and in software.

Modelling your chosen Solution

To assist in developing a deeper understanding of the chosen solution, a range of modelling tools

have been developed. This begins with a level 0 context diagram, then a level 1 data flow

diagram and finally the input process output (IPO) charts necessary for each module.

LEVEL 0 DIAGRAM | Context Diagram

The context diagram is the highest level in a data flow diagram and establishes the context and

boundaries of the system to be modelled. By identifying the flow and interaction of information

between the system and external entities, it provides an improved perspective of the scope

under investigation.

JADE HARRIS | 11SDD

12

LEVEL 1 DIAGRAM | Dataflow Diagram

The dataflow diagram illustrates the interaction between processes within the system and the

flow of data between these processes. However, as the Hangman application processes typically

read from public variables and rely on differing events to be used, the broader diagram below

represents the sequence of processes in the most effective and accurate way:

MODELLING | Input Processing Output (IPO) Chart

An input, process, output chart is used to describe the data elements which will enter the

module, the process necessary to produce the output, and the output itself that will leave the

function. A chart has been created for each module:

Form1()

INPUT PROCESS OUTPUT

Windows Form application is

launched

1. Hide all of the other elements so

only the title screen and start

button is visible

Title screen and start button is

displayed

MakeInvisible()

INPUT PROCESS OUTPUT

All gameplay interface elements

are visible

1. Hide all of the elements except

the titleScreen, startButton,

nextButton, loadingScreen and

correctWord

All gameplay elements are hidden

JADE HARRIS | 11SDD

13

StartButton_Click()

INPUT PROCESS OUTPUT

Mouse input clicking on

startButton

1. Hide start button and title screen

(as now game has started)

2. Call Start()

A hidden start button

Begin gameplay

Start()

INPUT PROCESS OUTPUT

GuessesLeft

No elements displayed on the

interface

No guesses or gameplay active

1. Show ‘loading screen’ effect by

calling LoadingScreen()

2. Set guesses to 11

3. Hide staticImage picture box

4. Show icon picture box

5. Disable animatedImage (prevent

6. Enable submit button

7. Enable delete button

8. Set letterGuessed textbox to

empty

Seamless ‘loading screen’ transition

Set/reset guesses

Prevent gif from looping in

background

Allow use of submit and delete button

Prepare for gameplay interface

LoadingScreen()

INPUT PROCESS OUTPUT

Current program interface 1. Make gameplay elements

invisible

2. Display a textbox which adds a “.”

at a specified time interval to

creating a loading screen effect

3. Hide textbox once the ‘loading

screen’ is complete

4. Display gameplay interface

Seamless loading screen transition

Gameplay interface displayed for use

MakeVisible()

INPUT PROCESS OUTPUT

All gameplay interface elements

are invisible

1. Show all the elements except the

titleScreen, startButton,

nextButton, loadingScreen and

correctWord

All gameplay elements are displayed

JADE HARRIS | 11SDD

14

SelectTargetWord()

INPUT PROCESS OUTPUT

External text file full of words

1. Open, sequentially read and close

text file

2. For each word in the text file read

into a list

3. Generate a random number

4. Use random number as index for the

list (to randomly select a word)

5. Create a separate string which

replaces each letter in target word

with an underscore

6. Add a space between each

underscore

7. Set textbox to display concealed

word

Randomly selected target word

Target word concealed under

underscore placeholders

Textbox displays concealed word

(with spaces)

AddSpacesForDisplay()

INPUT PROCESS OUTPUT

Placeholders string 1. Split placeholder into an array of its

characters

2. Set/Reset display string to empty

3. For the number of characters in the

placeholder array, add that character

and a space to the display variable

4. Set the text of placeholderDisplay to the

display string

Textbox displays concealed

target word with spaces in

between each placeholder

ActivateButtons()

INPUT PROCESS OUTPUT

All buttons are deactivated 1. Set all buttons on the keyboard to

enabled = true

All buttons on the on-screen

keyboard are activated

JADE HARRIS | 11SDD

15

Letter_Click()

DeleteButton_Click()

SubmitButton_Click()

SubmitGuess()

INPUT PROCESS OUTPUT

Button of letter played guessed 1. Set textbox to the text of the button

the player guessed

Text box displays the letter the

player has chosen

INPUT PROCESS OUTPUT

Delete button clicked 1. Set the text box of current guess

to “”

Remove any letter chosen/no guess is

currently active

INPUT PROCESS OUTPUT

Submit button clicked 1. Add a layer of protection so that

an empty guess isn’t made

2. Call Start() to begin

Guess is made and processed.

INPUT PROCESS OUTPUT

Letter player guessed

Target word

1. For each letter in target word,

compare it with the guessed

letter

2. If they match, add position to a

record of other positions which

match

3. For every position that matches,

replace the underscore with the

correct letter

4. Update the text box with the

concealed target word with the

letter that has been revealed

5. Add a space between each letter

before display

6. If no positions match, run

FailedGuess()

7. Call LoadingScreen()

If the guess was correct, reveal the

letter in the placeholders string

If the guess was incorrect, a hangman

body part should appear and a guess

left subtract

Disable submit and delete button (as a

guess was just submitted so no guess

made yet)

Loading face interface (to increase

suspense)

JADE HARRIS | 11SDD

16

FailedGuess()

PlayAnimation()

NextButton_Click()

INPUT PROCESS OUTPUT

Number of guesses left

Loading screen interface

1. Subtract one guess from guesses

left

2. Call PlayAnimation()

3. Call CheckForLoss()

One less guess left

Indicate a life was lost

If the player has lost, display loss

interface

INPUT PROCESS OUTPUT

Loading screen interface 1. Set a ‘next’ button to visible

2. Call MakeInvisible()

3. Show and enable animated image

box

4. Use switch case to choose which

.gif image is displayed

Animated ‘drawing’ cut-screen of the

hangman body part according to

number of guesses left

‘Next’ button for when user is ready to

make their next guess

INPUT PROCESS OUTPUT

Next button clicked 1. Hide next button

2. Call MakeVisible() to return to

gameplay interface

3. Hide and disenable animated

image box

4. Use switch case to choose which

static image is displayed

5. If case is 0 (no guesses left) then

display textbox which contains

word

Interface returns to gameplay

interface

Static image is included on the

interface which changes according to

number of guesses left

Display loss interface (specifically once

the next has been clicked)

JADE HARRIS | 11SDD

17

CheckForLoss()

CheckForWin()

DeactivateButtons()

INPUT PROCESS OUTPUT

All buttons are activated 1. Set all buttons on the keyboard to

enabled = false

All buttons on the on-screen

keyboard are deactivated

FormClose()

ResetButton_Click()

INPUT PROCESS OUTPUT

Number of guesses left 1. If number of guesses left is less

than 1, set letter guessed text to

“YOU LOSE”

2. Disable buttons on the on-screen

keyboard

Provide condolence message

Disable on-screen keyboard (as loss

has occurred)

INPUT PROCESS OUTPUT

Placeholders string 1. If there are no placeholders in the

placeholders string (no

underscores), set letter guessed

text to “YOU WIN!”

2. Disable buttons on the on-screen

keyboard

Provide congratulatory message

Disable on-screen keyboard (as win

has occurred)

INPUT PROCESS OUTPUT

Form closing 1. Trigger a message box to pop up

which asks “Are you sure you

want to exit?”

2. If player selects no, cancel the

form closing event

Protects form from being accidentally

closed

INPUT PROCESS OUTPUT

Reset button clicked 1. Trigger a message box to pop up

which asks “Are you sure you

want to reset?”

2. If player selects yes, call Start()

Protects gameplay from being

accidentally reset

Restarts game

JADE HARRIS | 11SDD

18

Planning and Designing

Software Development Approach

As the most suited software development approach to larger projects with a long history of

successful use, the structured development approach lends itself to the specific nature of the

Hangman solution. While team discussion and decision of this approach was only conducted by

the developer as the hangman project was completed solo, extensive deliberation and

justification still occurred. The minor variation in development requirements from the

comprehensive problem definition and clear gameplay instructions of the project lends itself to

this decision. While a significant disadvantage of the structured approach is that each stage in

the process usually cannot be started until the previous stage is complete, the definite objectives

of Hangman are well-suited to the thorough planning required as a result. Further, each deadline

estimation can be reasonably accurate as the features won’t expand. Thus, the resulting efficient

time management can enhance the quality of the final application and is extremely appropriate

to the long nature of the 5-week project. The structured approach also allows back-tracking to

the previous stage in case a problem is discovered. This lends itself to software development,

particularly as a learning developer, and its structure discourages procrastination. This report

follows the 5 stages of the approach: defining and understanding the problem, planning and

designing a solution, implementing the solution, testing and evaluating the solution and

maintaining the solution. By employing the thorough process of the structured approach, a well-

considered and justified product with effective documentation has been produced.

PLANNING AND DESIGNING | PDR BODY

BEGIN Form1 1

MakeInvisible 2

END Form1 3

 4

SET guessedLetter as public 5

SET guessedLetterChar as public 6

SET targetWord as public 7

SET placeholders as public 8

SET guessesLeft as public 9

 10

BEGIN MakeInvisible 11

Hide all elements of the gameplay interface 12

END MakeInvisible 13

 14

BEGIN StartButton_Click 15

Hide startButton 16

Hide titleScreen 17

Start 18

END StartButton_Click 19

 20

BEGIN Start 21

LoadingScreen 22

SET Guesses to 11 23

SET staticImage to Static0 24

SET iconImage to Icon0 25

Enable animatedImage 26

Disable submitButton 27

Disable deleteButton 28

This part of the algorithm is not included in any function as

they are deliberately defined outside any module to be

used as public variables. This is a result of the event-based

subroutines of Windows Applications Forms.

Algorithm Creation

JADE HARRIS | 11SDD

20

SET textbox letterGuessed to “” 29

SelectTargetWord 30

ActivateButtons 31

END Start 32

 33

BEGIN LoadingScreen 34

 MakeInvisible 35

Show loadingScreen textbox 36

FOR i = 0 TO 4 STEP 1 37

Update interface 38

Add “.” to loadingScreen textbox 39

Wait 500 milliseconds 40

NEXT i 41

Set loadingScreen textbox to “” 42

Wait 500 milliseconds 43

Hide loadingScreen textbox 44

MakeVisible 45

END LoadingScreen 46

 47

START MakeVisible 48

 Show all elements of the gameplay interface 49

END MakeVisible 50

 51

START SelectTargetWord 52

 SET path to file ”words.txt” 53

 Create new list wordPool 54

Open words.txt file for reading 55

 Read all lines from words.txt into an array of lines 56

JADE HARRIS | 11SDD

21

 Close words.txt file 57

 numberOfWordsInPool = 0 58

 FOREACH line IN the array of lines STEP 1 59

 wordsInFile = Split each line into words at the comma 60

 numberOfWordsInPoolAdjustedForIndex = length of wordsInFile - 1 61

 FOR i = 0 TO numberOfWordsInPoolAdjustedForIndex STEP 1 62

 Add wordInFile (i) to wordPool 63

 NEXT i 64

 NEXT line 65

 randomIndex = Get a random number 66

 SET targetWord to wordpool (randomIndex) 67

 SET placeholders to “” to remove text 68

 FOR i = 0 TO length of target word STEP 1 69

 Add “_” to placeholders 70

 NEXT i 71

 AddSpacesForDisplay 72

END SelectTargetWord 73

 74

START AddSpacesForDisplay 75

 GET placeholders 76

 splitPlaceholders = placeholders string split into separate characters 77

SET display textbox to “” 78

 FOR i = 0 TO length of placeholders STEP 1 79

 Add splitPlaceholders (i) to display 80

 STEP i 81

 SET the textbox placeholderDisplay to display 82

END AddSpacesForDisplay 83

 84

JADE HARRIS | 11SDD

22

START ActivateButtons 85

 Enable all buttons on the on-screen keyboard 86

END ActivateButtons 87

 88

START Letter_Click 89

 GET letter 90

 SET the textbox letterGuessed to letter 91

 SET guessedLetterChar to letter 92

Enable submit button 93

 Enable delete button 94

END Letter_Click 95

 96

START DeleteButton_Click 97

 SET letterGuessed textbox to “” 98

 Disable submit button 99

 Disable delete button 100

END DeleteButton_Click 101

 102

START SubmitButton_Click 103

 IF guessedletter <> “” THEN 104

 SubmitGuess 105

 ENDIF 106

END SubmitButton_Click 107

 108

START SubmitGuess 109

 splitTargetWord = split target word into characters 110

 SET positionsOfGuessedLetter to empty list 111

 SET letterPosition to 0 112

JADE HARRIS | 11SDD

23

 LoadingScreen 113

 FOREACH letter IN splitTargetWord 114

 If guessedLetterChar = letter THEN 115

 ADD letterPosition to positionsOfGuessedLetter 116

 SET letterGuessed textbox to “Correct!” 117

 ENDIF 118

 letterPosition = letterPosition + 1 119

 NEXT letter 120

 IF length of positionsOfGuessedLetter = 0 THEN 121

 FailedGuess 122

 ENDIF 123

 FOREACH position IN positionsOfGuessedLetter 124

 Placeholders = remove placeholder at position and insert with guessedLetter 125

 NEXT position 126

 Clear positionsOfGuessedLetter 127

 AddSpacesForDisplay 128

 CheckForWin 129

 Disable SubmitButton 130

 Disable DeleteButton 131

END SubmitGuess 132

 133

START FailedGuess 134

 guessesLeft = guessesLeft - 1 135

 PlayAnimation 136

 CheckForLoss 137

END FailedGuess 138

 139

START PlayAnimation 140

JADE HARRIS | 11SDD

24

 Show nextButton 141

 MakeInvisible 142

 Enable animatedImage 143

 Show animatedImage 144

 CASEWHERE guesses is 145

 10 : SET animatedImage to Frame1 146

 9 : SET animatedImage to Frame2 147

 8 : SET animatedImage to Frame3 148

 7 : SET animatedImage to Frame4 149

 6 : SET animatedImage to Frame5 150

 5 : SET animatedImage to Frame6 151

 4 : SET animatedImage to Frame7 152

 3 : SET animatedImage to Frame8 153

 2 : SET animatedImage to Frame9 154

 1 : SET animatedImage to Frame10 155

 0 : SET animatedImage to AnimatedLose 156

 ENDCASE 157

END PlayAnimation 158

 159

START NextButton_Click 160

 Hide nextButton 161

 MakeVisible 162

 Hide animatedImage 163

 Disable animatedImage 164

 Show staticImage 165

 CASEWHERE guesses is 166

 10 : SET staticImage to Static1 167

 9 : SET staticImage to Static2 168

JADE HARRIS | 11SDD

25

 8 : SET staticImage to Static3 169

 7 : SET staticImage to Static4 170

 6 : SET staticImage to Static5 171

 5 : SET staticImage to Static6 172

 4 : SET staticImage to Static7 173

 3 : SET staticImage to Static8 174

 2 : SET staticImage to Static9 175

 1 : SET staticImage to Static10 176

 0 : SET staticImage to StaticLose 177

 Show correctWord 178

 Display “THE WORD WAS “ + targetWord 179

 SET image of Icon to Icon2 180

 ENDCASE 181

END NextButton_Click 182

 183

START CheckForLoss 184

 IF guesses < 1 THEN 185

 Display “YOU LOSE” 186

 DeactivateButtons 187

 ENDIF 188

END CheckForLoss 189

 190

START DeactiveButtons 191

 Disable all buttons on the keyboard 192

END DeactiveButtons 193

 194

START FormClose 195

 End = Display a message box “Are you sure you want to exit?” 196

JADE HARRIS | 11SDD

26

 IF End = no THEN 197

 Cancel the form from closing 198

 ENDIF 199

END FormClose 200

 201

START ResetButton_Click 202

 Restart = Display a message box “Are you sure you want to restart?” 203

 IF Restart = yes THEN 204

 Hide correctWord 205

 Start 206

 ENDIF 207

END RestartButton_Click208

NAMESPACES (class organisation)

Alongside the default namespaces provided with

the .NET Framework, the program begins by

adding System.IO and System.Threading. This

allows the use of the file.ReadAllLines() and

Thread.Sleep() methods. ReadAllLines opens the

external file, reads all of its lines into a string

array and then safely close the file again, while

the thread.Sleep() is used in the program’s

‘loading screen’ animation to add a pause

FORM1()

This code is provided default with the Windows

Forms Application .NET framework, initializing the

design components for the form. However, the

MakeInvisible() function was also added as the

program should launch straight into the title screen,

hiding the actual gameplay elements. This function

sets the visibility of the on-screen keyboard and other

objects to false so that only the title screen image and

button is visible.

 PUBLIC VARIABLES

These variables are deliberately not defined or initalised in any specific module as they serve as public variables. Because of the nature of the event-called functions, passing

variables as parameters to functions does not work. This method allows the target word, guessed letter, placeholder string and number of guesses left to be accessed by

numerous functions. For instance, the function which chooses the word and creates the placeholder string accordingly would not be able to just pass and call the placeholder

string into the Letter_Click function as the function is waiting to be triggered by a click event. This is a simple solution.

MAKEINVISIBLE()

This module hides the on-screen keyboard, textbox which displays the placeholders, static image

and icon image invisible to create the illusion of separate interfaces of a loading screen, cut-screen

and title screen.

STARTBUTTON_CLICK()

This module triggers the start events to occur when the title screen start button is clicked. By hiding

the titleScreen picture box (to create the effect the user is moving from the title screen to in game)

and making the start button invisible, this aesthetic addition is successfully achieved and provides a

clean transition. The start button is only the used on the first time the game is launched, hence why

Start() is a separate function so that it can be triggered by other events too (restart).

Implementing

Development of Code

IMPLEMENTING | PDR BODY

JADE HARRIS | 11SDD

28

LOADINGSCREEN()

This module contributes to usability and aesthetics, which enhance the overall

user experience and player engagement. This module attempts to create a loading

screen and ‘thinking’ effect to add a distinct flair to the game interface. Firstly all

of the main gameplay elements are made invisible then a textbox is shown which

prints a “. . .” effect. This creates the illusion the computer is ‘processing’ and is

achieved by using the Thread.Sleep() namespace in combination with a for loop to

add another “.” to the textbox each 5 milliseconds. 5 milliseconds is an optimal

amount of time as it retains player interest without becoming tedious. The

Application.DoEvents() is expanded on in the later ‘TESTING’ section of this

report,. In effect, it was a workaround for an issue Thread.Sleep() exposes in

Windows Forms applications. Once the loading screen has ‘complete’, the textbox

is set to empty and hidden prepared for the next function call, and the gameplay

elements prepared for their next use.

MAKEVISIBLE()

This module reverses MakeInvisible(), showing all of the gameplay elements to allow the player to guess a letter

or, if it the end of the game, see if they have won or lost and what the target word was.

START()

Called from either a click event from the start button when the player first launches the application, or from the reset button if they choose to respond to the message

box “Would you like to restart?” with a yes – this function starts/restarts the game. The function begins by calling the LoadingScreen() function, a ‘thinking’ cut-screen

designed to create a smooth transition. While guesses is defined but not initialized as a public variable, it is given a value here. This is because if the player chooses to

restart, by only running this function, the number of guesses can be reset as well. The module then sets the images of the static image box to image 0 – an image of a

black box to make the hangman appear invisible (particularly important when a game is reset as the number of guesses is reset too). This could have been achieved by

hiding the box, but changing the image is more consistent with the switch case. The module then sets the icon image as well, a minor design flair which contributes to

the overall aesthetics. Any .gif’s currently running are paused (precaution) and the submit and delete buttons for the keyboard are disabled (as now the keyboard is

visible but no guess has been made yet). Rather than simply having code which prevents the user submitting or deleting an empty guess, it makes more sense for the

interface to disable these buttons from use at all. The next line resets any guessed letter (or sets the textbox which displays the user’s current guess) to empty. The

module then calls the separate SelectTargetWord() and ActivateButtons() on the keyboard then the user can make their first guess.

JADE HARRIS | 11SDD

29

SELECTTARGETWORD()

This module selects the random target word by reading the external text file and then conceals it beneath underscore placeholders. Called after the Start or Restart function is

called, this segment of code serves to select a target word (replacing or setting a new word). By using the File.ReadAllLines method, the external text file (words.txt as defined by

path) is opened, and placed into an array and then closed. The .ToList() function is used due to developer personal preference, as the list data structure has a simple and readable

.Add() function. The number of the words in the pool is also defined outside of the for loop for readability. Each line in the words file is then separated at the comma and added

to an array as separate elements. This array is read into a for loop which goes from 0 to the number of words in the word pool – 1 (this is necessary as by default for loops start at

0 so this prevents the loop attempting to add an empty array element to wordsInFile. Each word in the array is then added to the WordPool list. A random number is generated

using the random class which is then used as the index to select a random word from the pool of words. This is how the random word requirement is achieved. The global

variable target word is then set to this word. In the most readable way, to create the placeholders that conceal the word, a for loop is simply used which goes from 0 to the

number of letters in the word (-1 as the for loop starts at 0) . This adds an underscore to the global placeholders variable. For aesthetics, a separate function which adds spaces in

between these underscores is called. While here the ‘placeholders’ variable could be passed through as a parameter, it is already a global variable so this would be redundant.

ADDSPACESFORDISPLAY()

This module adds a space between the underscores and/or any revealed letters by

splitting the string into an array of characters then adding the character itself and a

space and combining the string again. The placeholderDisplay textbox then displays

this more readable progress indicator as it now has spaces in between.

ACTIVATEBUTTONS()

The final subroutine called from the

start button, this module simply

activates the on-screen keyboard so

that the player can make their first

guess.

LETTER_CLICK()

Whenever a letter is selected, this module enters the

selected letter into the guessed letter text box to indicate to

the user that it is the letter that will be guessed once they hit

submit. This dynamically stores the current guessed letter

for use if the player hits submit. Once a letter has been

submitted, the submit and delete buttons also become

enabled for use (as a guess has now been made)

JADE HARRIS | 11SDD

30

DELETEBUTTON()

Intended for those who require learning aid to assist them in visualizing their guess before submitting, a delete button to clear the

textbox with the current guess is provided by setting the text to empty. This also disables the submit and delete button for usability as

there is now nothing to submit.

SUBMITBUTTON()

Additional safety-guard to prevent user

from entering an empty guess (for

instance if their machine is slower

functioning and does not disable the

submit button in time). This also sets

the letter that the user has guessed to

disabled so that it cannot be used

again, and also so the player can keep

track of which letters they have already

selected.

SUBMITGUESS()

This module executes when the

person enters their guess – either

called from the start button click

subroutine or on reset. The module

should evaluate the guessed letter

against all letters in the target word

and if there are no matches, then it

was an incorrect guess, otherwise it

should reveal the letter in the correct

position/s, It begins by splitting the

target word into an array of its

characters. A list of integers which

contains the positions of the guessed

letter is also created – this is necessary

as there may be multiple positions.

The loading screen is called for user-

experience, creating an effect as if the

computer is thinking about their

result. Then, for each letter in the

target word, it will be compared

against the guessed letter. This is

stored as a global character variable

which is updated on LetterClick(). The

loss condition is achieved by counting

the length of the array, if it is empty

then there have not been any matches

so the player has made an incorrect

guess.

FAILEDGUESS()

This module is called if the guessed letter was incorrect and not

contained in the target word. This subtracts one guess from the

global guessesLeft variable, calls a module to play the hangman

animation and then calls a subroutine to check for loss.

v

JADE HARRIS | 11SDD

31

SUBMITGUESS() CONTINUED…

If this occurs, a separate failed guess function occurs. However, if there are positions (this will just be skipped if there aren’t), the remove and insert methods are used to reveal

the letter. The remove method simply returns a new string which removes 1 letter from that specific position. The insert button is then used to insert the correct letter in the

position. This is achieved by using string interpolation (prefixing the string with $ then adding the variable in {}) in the Insert method’s string value input. This inserts the guessed

letter at the position/s – this code is specifically useful for efficient and readable code when there are multiple instances of the same letter in a word. The list of positions is then

cleared for its next use, spaces are added to display the word by calling the AddSpacesForDisplay() function (and as all of the string modification occurred on the global

placeholder variable) and the CheckForWin() module. For program consistency, once the player has submitted a guess the submit and delete button is disabled again as there is

now no current guess (because the guess was just submitted and text box set to empty).

PLAYANIMATION()

This subroutine achieves the animated drawing

hangman by utilising a number of .gif assets uploaded

in the program’s resource folder. To create a cut-

screen effect, all of the gameplay elements are set to

invisible again, but a ‘NEXT’ button is revealed. The

explanation for this addition is included in the

‘TESTING’ section, but this allows the user to complete

the cut screen and continue. This was mainly a

response to the infinitely looping .gifs (graphics

interchange format), but ultimately became a better

addition than originally intended. The image box

which contains the .gifs then is set to visible and

enabled, this allows the .gif’s to play. Depending on

how many guesses the player has left and therefore

what stage the hangman should be, the image box is

set to a different gif. These animations were designed

specifically for the game and leverage Adobe

Photoshop to achieve their effect. This is how the

animated .gif effect was achieved however, and it

makes for a unique and engaging gameplay

experience.

JADE HARRIS | 11SDD

32

NEXT_CLICK()

This button click event can only be activated following the

PlayAnimation function, allowing this module to act as a

sort of ‘skip’ or ‘finish’ cut-screen feature to return back

to the gameplay. Once the player has watched the

animated drawing adequately, once they click ‘next’ they

will be able to make their next guess (or if they have lost,

the keyboard will be disabled). Specifically, a static image

of the stage of the hangman will display when they return

back to the on-screen keyboard. This function achieves

this effect by hiding the button once it has been pressed

and making all of the gameplay objects visible again

(returning the player to the ‘guessing’ screen). The

animated image, which was previously playing, will be

hidden and disabled to prevent the .gif from infinitely

looping. A switch case is used depending on the number

of guesses the player has left to indicate which stage the

static hangman should be on. Each of these cases simply

set the static image box (smaller image box) to the

appropriate illustration. However, if the player has no

guesses left then case 0 is executed, indicating the end of

the game. This case simply sets the image to the ‘dead’

hangman drawn and reveals the correct word. The icon

image is also required to change as the purple bar alters

the interface.

CHECKFORLOSS()

This module is called after the switch case occurs and the

player has triggered the next button. This simply checks

If the user has no guesses and then state YOU LOST and

deactivates the on-screen keyboard. It is included

separately for readability and code logic.

CHECKFORWIN()

This function is called after the play has made any guess to check if a win event has occurred. This is achieved by simply checking if the placeholder string does not contain any ‘_’

which would mean that the player has successfully guessed all of the letters. The player is notified by receiving a congratulatory message ‘YOU WIN!’ in the textbox. In addition,

the on-screen is disabled for interface consistency and to indicate that the game has been complete.

DEACTIVATEBUTTONS()

Designed to run when the player has one or lost, this module disables all of the buttons on the on-screen

keyboard to emphasise that the game is over. This aesthetic feature also contributes to the consistency of

gameplay as every time a letter is chosen, that button is disabled. This means it makes sense for the entire

keyboard to be disabled when no more letters can be chosen.

JADE HARRIS | 11SDD

33

FORMCLOSE()

This event protects the exit button from being used accidentally and the program shutting down. While it wasn’t specific in the program requirements, it makes the program

interface more coherent as the restart button has a dialogue box pop-up so it only makes sense that closing the application is secured in a similar way. A dialogue box pops up

and if the user selects yes, then the software will not be interception and close but if the user choses no, the close event will be cancelled and the application remain running.

RESTARTBUTTON_CLICK()

The final module of the program is the restart button as required in the project outline. This is a simple and sleek solution to the problem and continues the overall program

aesthetic. When the restart button is clicked, to protect accidental use a dialogue box similar to the FormClose() module appears which asks “Are you sure you want to restart?”. If

the user selects Yes, then as a precaution the correct word which is appears if the player has lost disappears, and then the start function is called again. The game then restarts and

application has successfully achieved all of the requirements detailed.

Implementation Errors

Implementation issues are runtime, syntax and logic errors which occur during development of

the application code. During the programming stage, several errors were encountered

particularly involving the visuals and interface which the algorithms could not sufficiently

consider. While the client stated reproduction of the errors to provide screenshots in this

section was not necessary, the encountered errors are described below:

Numerous logical errors occurred due to values which were accidentally set incorrectly in

implementation. For instance, the display picture on incorrect guess behaved unexpectedly at

first as the number of attempts was accidentally set to 13 instead of 11, creating a logic error.

However, by returning to the code, this obvious error was noticed and adjusted appropriately to

trigger at 11, resolving the issue. A similar issue occurred in the FailedGuess() function where it

was accidentally set to -= 2, which caused the switch case to trigger incorrectly. Though this issue

was more complicated than an incorrect value, another logic error occurred in the

.Remove().Insert() methods where the letter would not be replaced. By engaging in extensive

research into the two methods, it was revealed that the first value in the parameter of .Remove()

is the starting position, then the second value counts how many is removed from that. This

corrected the assumption that .Remove() removed from value 1 to value 2, changing from

.Remove(position, position + 1) to .Remove(position, 1).

The most significant issue faced was likely the .gif images which unexpectedly looped. When the

graphics were first implemented, this problem hadn’t yet emerged as only the static hangman

images had been inserted (and as the Gantt chart illustrates, placeholder images were used at

JADE HARRIS | 11SDD

34

first). However, during the development of the first ‘cut-screen’, the .gif infinite loop was

exposed. At first, the gif was supposed to loop once then return to the gameplay screen,

however, this issue meant that the player could not progress. At first solutions to this error

involved altering the export settings of the .gif image file to loop ‘only once’. However, through

thorough research, it was revealed that ongoing looping is an inherent feature in Windows Forms

Applications. The obvious solution to this error was to implement code which simply made the gif

disappear with a Thread.Sleep() after it had looped once. However, this problem was

complicated by the fact that Thread.Sleep() from the System.Threading package cannot be used

because the method blocks the user-interface thread. This means the gif is prevented from

updating as well so to simply wait the duration of one .gif loop and then hide the picture box

would cause the .gif to loop not play.

Ultimately, I discovered that the ‘enabled’ property of a picture box could pause a gif. This

introduced the solution of adding a ‘next’ button that would turn ‘enabled’ to false when

pressed. This meant the gif would keep looping until the player was ready to progress and

prompted the implementation of the seamless cutscene idea. To further enhance the looping

animation of the hangman being drawn, the .gif image file itself was adjusted to pause once the

body part was drawn then add a ‘blinking’ animation before repeating. This enabled a much

smoother visual effect. Although this issue posed a major complication during testing stages, it

ultimately improved the user-experience past its original ideas.

Multiple other errors were faced during development. One of these was a logic error where the

‘_’ placeholders variable would continually combine in the textbox, rather than clearing. As

mentioned in the ‘Ideas Generation’ and ‘Implementation’ sections, the placeholders variable is

created by += ‘_’ for each letter in the target word. However, by inserting a breakpoint and

following the value of the variables, it was exposed that the += meant it was continually adding

to the previous string. By re-initialising the placeholders variable in the ChooseWord() function,

this error was solved. Another issue was a syntax error where I had forgotten how to define a

switch case. However, his was swiftly resolved by revising the syntax.

One final implementation error was faced in the code which replaced the placeholder with the

letter if the player’s guess was correct. Originally, the spaces were inserted in the placeholder to

create a string like: “_ _ _”, then the .Insert() and .Remove() methods were used. This would

mean that .Remove(position, 2).Insert(position, $”{guessedLetter}” should have been used.

However, this was not realised at first and a complicated for loop was designed – which did not

work at all. To avoid this issue completely, instead the string was used with no spaces (“___”) and

then the spaces were added in after seen in the AddSpacesForDisplay() function. Ultimately, this

error actually led to a more readable solution.

Overall, several syntax and logic errors were encountered during the implementation of sthe

code. However, runtime errors were generally minimal as the modules were guarded against

these types’ errors – for instance – the algorithm structure made it impossible to submit an

empty guess. The guidance provided by the algorithms and the structured approach allowed

effective solutions to be reached, at times even bettering the existing code.

JADE HARRIS | 11SDD

35

Testing of code

Throughout the development process of the application, continuous testing was conducted

following the implementation of any new module once they appeared to be completed. Firstly,

the game would be completely played through with the new module to ensure none of the

modules conflicted with the added segment. This also confirmed that the module worked

correctly. Once the module had been sufficiently tested for flaws, I employed the assistance of a

family member to test its boundaries. As each distinct user has a unique approach to the game,

this play-testing step is vital to any program. Majority of the time the module worked as

expected given the well-planned interface and solution. However, if the module behaved

unexpectedly or an error occurred, the code was firstly checked for any obvious mistakes. If the

issue continued then a breakpoint was inserted. Three significant issues were discovered during

the continuous testing of the code:

1. At first, an issue occurred during testing when the player could enter an empty guess selection.

While the submit guess button would not let the player submit if an invalid guess was made,

testing of the function found that it appeared in the user interface like a program error. The play-

testers also agreed with this conclusion. Instead, the module was adjusted and the submit button

was visually disabled when no guess was evident. While this required further refining to ensure

that the button was disabled when there were actually no words, it was an accurate solution to

the issue. This was solved by employing a technique where the project was duplicated and

started in a completely different Windows Forms application. This reduced the pressure of

designing a solution as there was a clear checkpoint to return to.

2. During the initial testing stages of the program, a major issue was discovered. Every target

word up until testing by my family somehow involved words with no duplication of letters.

However, during one of the first play-throughs the word ‘U M B R E L L A” was the target word.

The testing exposed a critical flaw in the logic of the program as only one of the placeholders was

replaced with an ‘L’. This happened because the position was originally stored in a single integer

variable, so only the position of the last occurrence was stored and changed. After inserting a

breakpoint to carefully follow the flow of data and understand the context of the issue, the use

of a list became obvious. This list could then cycle through each position that matched, which

would allow words with repeated letters to reveal the letters correctly.

3. A rather unique issue which was revealed during testing was the impact of full screen mode on

the interface. From the thorough testing by the external testers, one had attempted to full

screen the application. This produced a surprising result and, in effect, ‘broke’ the interface and

its overall effect. Through thorough research into how to prevent Windows Form applications

from being launched in full screen, the FormBorderStyle property was discovered. This was an

ideal solution as it removed the full screen option all together (preventing it appearing like a

program error) and created a memorable form application.

JADE HARRIS | 11SDD

36

Testing and Evaluation

Testing

To effectively conduct testing before release, the finalised version of the modules should undergo

rigorous testing with an extensive range of test data. If these functions had required a user input, this

could have been tested with a desk check. However, performing a desk check is difficult as the modules

are already guarded from invalid inputs. Future improvements, the development of each module, and

this justification for lack of test data is elaborated on below:

Form1()

 No test data is required to test the boundaries of this module as it only serves to call other functions.

However, testing can be performed by executing the module and checking its behaviour, and it clearly

works as intended.

 MakeInvisible()

The use of rigorous test data is not applicable for this module as it simply makes interface elements

invisible and there is no user input to test. However, testing can be performed by executing the module

and checking its behaviour, and it clearly works as intended.

StartButton_Click()

The use of rigorous test data is not applicable for this module as it simply reads a mouse click input.

However, testing can be performed by executing the module and checking its behaviour, and it clearly

works as intended.

Start()

The use of rigorous test data is not applicable for this module as it simple makes interface elements

invisible and there is no input to test. However, testing can be performed by executing the module and

checking its behaviour, and it clearly works as intended.

INPUT EXPECTED OUTPUT OUTPUT

Application begins Form loaded and the main gameplay

elements are invisible

Form loaded and the main gameplay

elements are invisible

INPUT EXPECTED OUTPUT OUTPUT

Main gameplay elements are

visible

Main gameplay elements are hidden Main gameplay elements are hidden

INPUT EXPECTED OUTPUT OUTPUT

Start button clicked Start function called successfully

(indicated by start events executing)

Start function called successfully

(indicated by start events executing)

TESTING AND EVALUATION | PDR BODY

JADE HARRIS | 11SDD

37

LoadingScreen()

The use of rigorous test data is not applicable for this module as it simply calls other events and displays

objects thus there is no input to test. However, testing can be performed by executing the module and

checking its behaviour, and it clearly works as intended.

MakeVisible()

The use of rigorous test data is not applicable for this module as it simply makes interface elements

visible and there is no input to test. However, testing can be performed by executing the module and

checking its behaviour, and it clearly works as intended.

SelectTargetWord()

The use of rigorous test data is not applicable for this module as it always reads in a word and there is no

unexpected input to test. The main test data which would be used here was if no word was chosen, as

creating the placeholders would not work. However – there will always be a word due to the structure of

the program. This makes test data from a desk check of no use. Testing can however be performed by

executing the module and checking its behaviour, and it clearly works as intended.

INPUT EXPECTED OUTPUT OUTPUT

GuessesLeft

No elements displayed on the

interface

No guesses or gameplay active

Seamless ‘loading screen’ transition

Set/reset guesses

Prevent gif from looping in

background

Allow use of submit and delete

button

Prepare for gameplay interface

Seamless ‘loading screen’ transition

Set/reset guesses

Prevent gif from looping in

background

Allow use of submit and delete

button

Prepare for gameplay interface

INPUT EXPECTED OUTPUT OUTPUT

Current program interface Seamless loading screen transition

Gameplay interface displayed for use

Seamless loading screen transition

Gameplay interface displayed for use

INPUT EXPECTED OUTPUT OUTPUT

All gameplay interface elements

are invisible

All gameplay elements are displayed All gameplay elements are displayed

JADE HARRIS | 11SDD

38

AddSpacesForDisplay()

This rigorous data testing clearly exposes the potentials for an error if an empty word is chosen to have

spaces inserted in between. However, this is prevented from ever occurring by the structure of the

program as the module is never called unless placeholder has already been assigned. This was the main

DATA ITEM: TargetWord EXPECTED OUTPUT REASON FOR INCLUSION

“Bob” “B o b” Shorter word to test spaces are still inserted when

there are more letters

“Daffodil” “D a f f o d i l” Longer word to test spaces are still inserted when

there are more letters

“” “” Test if a program error occurs and no string is

inputted to get spaces inserted

placeholders splitPlaceholders Display i Placeholders.Count() splitPlaceholders[i] placeholderDisplay.Text

“Bob” {B,o,b} “B ” 0 3 “B”

 “B o “ 1 “o”

 “B o b ” 2 “b” “B o b “

placeholders splitPlaceholders Display i Placeholders.Count splitPlaceholders[i] placeholderDisplay.Text

“” {} “” 0 0 SKIPPED “”

placeholders splitPlaceholders Display i Placeholders.Count() splitPlaceholders[i] placeholderDisplay.Text

“Daffodil” {D,a,f,f,o,d,i,l} “D ” 0 8 “D”

 “D a “ 1 “a”

 “D a f ” 2 “f”

 “ D a f f “ 3 “f”

 “ D a f f o “ 4 “o”

 “ D a f f o d“ 5 “d”

 “ D a f f o d i “ 6 “i”

 “ D a f f o d i l “ 7 “i” “D a f f o d i l “

placeholders splitPlaceholders Display i Placeholders.Count splitPlaceholders[i] placeholderDisplay.Text

“Bob” {B,o,b} “B ” 0 3 “B”

 “B o ” 1 “o”

 “B o b “ 2 “b” “B o b”

JADE HARRIS | 11SDD

39

issue regarding thorough testing as the function is already guarded from an invalid input. This brief test

data does, however, also illustrate the successful functioning of the module.

ActivateButtons()

The use of rigorous test data is not applicable for this module as it simply enables the interface elements

visible and there is no input to test. However, testing can be performed by executing the module and

checking its behaviour, and it clearly works as intended.

 Letter_Click()

The use of rigorous test data is not applicable for this function as it simply reads the letter pressed and

converts it to character so there is no unexpected input to test. The fact that a letter must be clicked

guards the function from the most likely error of no letter being entered (which would throw an error

when converting an empty string). This means test data has little use. However, testing can be performed

by executing the module and checking its behaviour, and it clearly works as intended.

 DeleteButton_Click()

The use of rigorous test data is not applicable for this module as it simply clears the textbox and there is

no unexpected input to test. However, testing can be performed by executing the module and checking

its behaviour, and it clearly works as intended.

 SubmitButton_Click()

The use of rigorous test data is not applicable for this module as it simply checks if there is text thus there

is no unexpected input to test. However, testing can be performed by executing the module and checking

its behaviour, and it clearly works as intended.

INPUT EXPECTED OUTPUT OUTPUT

All buttons are deactivated All buttons on the on-screen

keyboard are activated

All buttons on the on-screen

keyboard are activated

INPUT EXPECTED OUTPUT OUTPUT

Button of letter played guessed Text box displays the letter the player

has chosen

Text box displays the letter the

player has chosen

INPUT EXPECTED OUTPUT OUTPUT

Delete button clicked Remove any letter chosen so no

guess is currently active

Remove any letter chosen so no

guess is currently active

INPUT EXPECTED OUTPUT OUTPUT

Submit button clicked Guess is made and processed.

Guess is made and processed.

JADE HARRIS | 11SDD

40

SubmitGuess()

The use of rigorous test data is not applicable for this module as it is guarded against any potential errors.

This is similar to the previous AddSpacesForDisplay() desk check, where an error would obviously be

thrown if no letter was submitted to be guessed or if there was no target word. However, because of the

structure of the application and how it disables the submit button if no guess is currently made, this

testing is redundant. Further, the SelectTargetWord module is always called before the player can sub,it a

guess, so there will always be a word to compare it against. However, testing can still be performed by

executing the module and checking its behaviour, and it clearly works as intended.

FailedGuess()

The use of rigorous test data is not applicable for this module as it simply subtracts 1 from guessesLeft

then calls two functions so there is no unexpected input to test. However, testing can be performed by

executing the module and checking its behaviour, and it clearly works as intended.

INPUT EXPECTED OUTPUT OUTPUT

Letter player guessed

Target word

If the guess was correct, reveal the

letter in the placeholders string

If the guess was incorrect, a hangman

body part should appear and a guess

left subtract

Disable submit and delete button (as

a guess was just submitted so no

guess made yet)

Loading face interface (to increase

suspense)

If the guess was correct, reveal the

letter in the placeholders string

If the guess was incorrect, a

hangman body part should appear

and a guess left subtract

Disable submit and delete button (as

a guess was just submitted so no

guess made yet)

Loading face interface (to increase

suspense)

INPUT EXPECTED OUTPUT OUTPUT

Number of guesses left

Loading screen interface

One less guess left

Indicate a life was lost

If the player has lost, display loss

interface

One less guess left

Indicate a life was lost

If the player has lost, display loss

interface

JADE HARRIS | 11SDD

41

PlayAnimation()

The use of rigorous test data is not applicable for this module as it is a

simple switch case which reads guessesLeft so there is no unexpected

input to test. Additionally, the structure of the program means

guessesLeft always has a value, for instance, if the program is reset,

the number of guesses is reset too allowing the variable to continue

working. However, testing can be performed by executing the module

and checking its behaviour, and it clearly works as intended. Further,

the graphics work successfully which indicate that the correct switch

case has been entered. Inserting a break point serves to ensure that

these cases work correctly.

NextButton_Click()

The use of rigorous test data is not applicable for this module as the structure of the program means

guessesLeft always has a value, so performing a desk check is redundant. However, testing can be

performed by executing the module and checking its behaviour, and it clearly works as intended. Further,

the correct graphic is displayed which indicates that the correct switch case has been entered. Inserting a

break point serves to ensure that these cases work correctly.

CheckForLoss()

The use of rigorous test data is not applicable for this module as it simply checks if guessesLeft is less than

1 so there is no unexpected input to test. However, testing can be performed by executing the module

and checking its behaviour, and it clearly works as intended.

INPUT EXPECTED OUTPUT OUTPUT

Loading screen interface Animated ‘drawing’ cut-screen of the

hangman body part according to

number of guesses left

‘Next’ button for when user is ready

to make their next guess

Animated ‘drawing’ cut-screen of the

hangman body part according to

number of guesses left

‘Next’ button for when user is ready

to make their next guess

INPUT EXPECTED OUTPUT OUTPUT

Next button clicked Interface returns to gameplay

interface

Static image is included on the

interface which changes according to

number of guesses left

Display loss interface (specifically

once the next has been clicked)

Interface returns to gameplay

interface

Static image is included on the

interface which changes according to

number of guesses left

Display loss interface (specifically

once the next has been clicked)

JADE HARRIS | 11SDD

42

CheckForWin()

The use of rigorous test data is not applicable for this module as it simply checks if placeholders contain

underscore and the only error would be if there was no underscore. The program is guarded from this

error due to its structure however, as placeholders always contains a word. However, testing can be

performed by executing the module and checking its behaviour, and it clearly works as intended.

DeactivateButtons()

The use of rigorous test data is not applicable for this module as it simply disables the interface element

and there is no input to test. However, testing can be performed by executing the module and checking

its behaviour, and it clearly works as intended.

FormClose()

The use of rigorous test data is not applicable for this module as it simply displays a message box with

two options so there is no unexpected input to test. However, testing can be performed by executing the

module and checking its behaviour, and it clearly works as intended.

ResetButton_Click()

The use of rigorous test data is not applicable for this module as it simply displays a message box with

two options so there is no unexpected input to test. However, testing can be performed by executing the

module and checking its behaviour, and it clearly works as intended.

INPUT EXPECTED OUTPUT OUTPUT

Number of guesses left Provide condolence message

Disable on-screen keyboard (as loss

has occurred)

Provide condolence message

Disable on-screen keyboard (as loss

has occurred)

INPUT Provide congratulatory message OUTPUT

Placeholders string Disable on-screen keyboard (as win

has occurred)

Provide congratulatory message

Disable on-screen keyboard (as win

has occurred)

INPUT EXPECTED OUTPUT OUTPUT

All buttons are activated All buttons on the on-screen

keyboard are deactivated

All buttons on the on-screen

keyboard are deactivated

INPUT EXPECTED OUTPUT OUTPUT

Form closing Protects form from being accidentally

closed

Protects form from being

accidentally closed

JADE HARRIS | 11SDD

43

→ Produce a working graphical user-interface game of Hangman, or alternatively Snowman, designed to run in a Windows form

application

→ Randomly select a word from a list of words residing in an external text file which the player must guess. This should be hidden.

→ If the user guesses an incorrect letter, each body part is to appear or disappear (if Snowman was chosen)

Evaluation

Overall, I believe the thorough planning of the structured approach has enabled the developed

product to effectively and efficiently fulfil the initial requirements. As demonstrated in the above

‘Testing’ section, the program successfully achieves its expected outputs. The produced solution

and overall project can then be evaluated by comparing these results against the initial

requirements defined in the ‘identification of the problem’ section. These requirements were

succinctly articulated into the following points in the ‘Understanding and Defining Problem

Section’:

The proposed application undoubtably delivers on the project’s purpose, creating a working

graphical user interface game of the traditional Hangman. The software’s mechanics outlined in

‘functionality’ is clear in the intuitive gameplay of the application, and the interface successfully

serves to enhance the user-experience. Further, the Windows Form application contains distinct

style and flair, creating an immersive gameplay experience. The test data serves to exemplify the

functionality of the program, where performing a desk check typically has minimal use. This is

because the modules are guarded to the point that any data which would even cause any errors

cannot be entered.

As witnessed in the testing section, the module is guarded to most errors (providing an external

file is excluded) due to the structure of the program so the program successfully accesses an

external sequential file to read a list of words. This is achieved simplistically and efficiently with

the File.ReadAllLines method which opens, reads the file into a string array and then closes the

file, exposing minimal security threats. The system’s solution to randomly selecting a word by

generating a number which serves as a random index for an element in this list is clean and

readable. Additionally, the use of a for loop to hide the target word beneath a separate string of

underscores was an effective solution and the AddSpacesForDisplay makes it more readable. I

believe this application successfully achieves this requirement in a clear and efficient way.

INPUT EXPECTED OUTPUT OUTPUT

Reset button clicked Gameplay cannot be accidentally

reset

Restarts game

Gameplay cannot be accidentally

reset

Restarts game

JADE HARRIS | 11SDD

44

→ If the user makes a correct guess, the letter/s must appear in their location in the chosen word

→ Already used letters must be displayed on the screen

→ If a player successfully solves the word, the game will provide a congratulatory message

Through the use of .gif’s, an extremely distinct and memorable solution was produced to display

the body parts of the hangman when an incorrect guess is made. The product of these animated

images exceeded my original expectation and sufficiently fulfils this requirement. By using a

simple switch case to change the contents of an image box, and by utilising the enable and

disable properties of the picture box, the working of this feature is clean and refined. This clear

function is evident in the PlayAnimation() test data, entering the correct switch case which SETs

the image to the correct file. Combining the .gifs with the static image box created a seamless

interface – allowing the player to immerse themselves in the game when a letter was guessed

wrong but still be able to make a guess depending on how much of the hangman was left. The

‘loading screen’ also serves to enhance this intensifying effort. The test information on the

PlayAnimation() module serves to support its effective solution. Overall, this requirement was

exceeded, and I am extremely satisfied with the implemented solution.

If the user makes a correct guess, by simply splitting the string of targetWord into an array,

comparing the guessed letter against each character, and then adding any positions where they

match to a list, this requirement is successfully fulfilled. As code efficiency is always an important

consideration, the use of only methods .Remove() and .Insert() at each position serve to make

the letter ‘appear’ in a clear and short way. As detailed in the ‘test data’ section, the module

‘SubmitGuess’ is guarded against errors due to the program’s structure. Overall, this is a

streamlined solution and the code itself remains readable– and readability is imperative for

further maintenance.

The application successfully implements this requirement in a clear and modern solution evident

in the success of the test data. By incorporating the already used letters by disabling their use on

the keyboard, the interface can remain decluttered and user will not get confused why a letter

won’t enter because it is clearly disabled. This system feature is rather unique from the original

broad specification and contributes greatly to the memorability of the product produced.

Setting the letterGuessed textbox to ‘YOU WIN!’ is a clean solution which successfully conveys a

congratulatory message. However, this feature has further potential for a .gif to be displayed, or

the player skip to a cut-screen, but an appropriate graphic to match the aesthetic and keep the

elegant interface was not achieved. Overall though, this potential is simply for aesthetics and the

program requirement was successfully achieved.

JADE HARRIS | 11SDD

45

→ If a player runs out of guesses and the final body part appears or disappears (if Snowman was selected) a condolence message

will appear

→ A button should be accessible that allows a new game to be played at any time but must be protected from accidental use

→ The project must follow the structured approach and its appropriate documentation in a PDR

The evaluation of the condolence message requirement is extremely similar to the

congratulatory message. However, I believe that the unique static image of the hangman with a

‘dead’ emotion and the purple textbox which displays the correct word provides the level of

aesthetics required for these win and lose events. In comparison to the congratulatory message,

the execution of the condolence message exceeds the requirement, though both solve the

original problem.

The protection for the reset button was well-executed, providing a noticeable yet clean Message

Box which confirms the users choice. This is consistent if the user chooses to exit, where a

message box requesting their confirmation appears. The testing section proves that the message

boxes are successfully triggered. These are extremely clean and refined ways to achieve the

protected restart button which work while seamlessly integrating another feature.

The project successfully follows the structured approach and documents the process to great

effect. This is evidenced in the produced Project Development Report.

The system performance clearly fulfills the original requirements laid out in understanding and

defining with a unique and memorable flair. This evaluation is justified by the test data section

which ultimately concludes that the modules are guarded against errors occurring originally.

Providing the program is used appropriately and the external text file has not been adjusted, no

particular security issues arise. Despite the limited portability of Windows Form applications, the

engaging gameplay has the potential to be extended for further platforms with the existing

codebase through use of frameworks. Further, the potential for networkability can overcome

this restriction. While not included in the initial requirements, inclusivity and accessibility of the

software to a broad range of backgrounds has been considered and potential opportunities

identified for further celebration of diversity.

By using input data from only the mouse and the power of C# Windows Form Applications, it is

undeniable that the project delivers a memorable solution. This program fulfils the requirements

laid out in the ‘Understanding and Defining the Problem’ section and brings the traditional game

of Hangman into the technological era.

JADE HARRIS | 11SDD

46

Maintenance of the software

Maintenance is imperative to ensuring the longevity of the software application and is provided

by the developer until no longer viable. The readability and clarity of the software solution

produced considers this ongoing development and enables adjustments to be made easily. As

the hangman project has a submission date deadline, ongoing support and extending features of

the program does not have an established time frame. However, there is a number of instances

where maintenance of the program is necessary and the appropriate methods should be taken. A

number of these potentials have been already considered, for instance if the user upgrades their

hardware, such as new monitor, the program interface will continue to open correctly as it has

been created the size of a small screen resolution. Yet several others cannot yet be considered,

such as when Microsoft releases an update to C#. Here, maintenance is necessary to ensure that

the code is compatible to runtime. This can be tested by launching the software application in

the updated version and resolving any complications or unexpected behaviours accordingly.

Another maintenance regard should be made to potential security issues, particularly if Microsoft

discovers any security vulnerabilities with the code or elements used. For instance, if Microsoft

discovers security vulnerabilities in C#, a new SDK and runtime will be released. This means that

the application must be updated to use the new SDK. Similar adjustment applies to

vulnerabilities in the program discovered through client response, where the system should be

adjusted accordingly as well.

Ensuring the longevity of the software also includes potential upgrades and addons for the

program, in particular considering the ongoing adjustments required to sustain player

engagement. As mentioned in the ‘Networkability’ and ‘Portability’ sections, upgrades for this

application could involve the networking and increase of platforms to create differing and unique

versions of the gameplay. For example, by leveraging a web framework such as ASP.Net the

program could implement networking to allow two players to play over the internet and

simultaneously compete for a hidden word. The use of a web server which communicates with

the players’ client machines would enable the application’s output to display on each monitor

while obfuscating the code which could allow cheating. This topology is expanded on in the

‘Networkability’ section. In regards to the migration of the developed package to other hardware

platforms, this could involve extending the existing codebase with the .NET developer platform

Xamarin. This would extend portability to IOS and Android operating systems and with careful

consideration of potential security threats, could ensure the relevance and longevity of the

application. Further, the migration on to other platforms may require adjusting the interface,

however, this can be seen as an opportunity to lead to more engaging and memorable gameplay

ideas.

Add-on suggestions of the existing game itself could elaborate on the current cut-screen and

seamless interface to enhance user-experience and engagement. The application could also be

extended to add a hint button and currency system, increasing the substance of the game.

Additionally, as noted in the ‘Implementation’ section, the solution has opportunity to

MAINTENANCE OF THE SOFTWARE | PDR BODY

JADE HARRIS | 11SDD

47

implement a feature that prevents words being repeated as the target word, however, the large

pool of 200 words should reduce the likelihood of this. Expanded on earlier in the report, the

application provides opportunity for a hint and currency system to be implemented.

Overall, the readability and clarity of the software solution produced allows maintenance and

further upgrades of the program to be completed with ease. While it is arguable that the use of a

Windows Form application is outdated, the produced solution is versatile with rich potential to

expand portability and networkability with the existing codebase. Consistent maintenance and

upgrades of the software can ensure the ongoing longevity of the produced application, and

ultimately enable the traditional game of hangman to continue to educate through the test of

time.

