([

HANGMAN

The 215 century is an advancing era, and mainstream games which were once played on paper have

begun to require digitisation in order to remain relevant to the screens and capabilities of today. The
Hangman Project Development Report endeavours to document the gamification process of the age-old
‘hangman’, imperative to improving spelling and literacy skills in young audiences, continuing its
educational benefits in modern times. The project follows the structured approach of software design
and development to support the proposed application solution while utilising a distinct ‘dark” modern
aesthetic. To effectively implement the structured approach, appropriate design tools, maintenance,

evaluation and programming constructs have been employed throughout the project.

AUTHOR/TEAM MEMBERS: Jade Harris 11SDD

MENTOR/TEACHER: Adam Leserve

CONTENTS

HANGMAN | PROJECT DEVELOPMENT REPORT

FAN [0 a3 [0 1o @] o [=Tot 41V PPN 3
T 0T <N 3
Y =To{ UL 1 2V PPPPPPPPRE 4
(Lo T =1 o111 Y 2SS 4
N =Y AT oY =] o1 L Y2 PPN 5
OVEIVIEW OF SYSTEIM weiiiiiiiiii ittt e sttt e e e ebt e e e e e sbteeessbteeessbeeeesesbteeesaseeeesanseneeennses 5
Data and INfOrMatioN........coouiiieiee ettt be e sae e bbb)
SOTEWAIE SEIUCTUIE ...ttt ettt et ettt e b e b e s bt e saeesateeabeebeesbeesbeesneenas)
Defining and Understanding the Problemooi it 6
Timing and SEqUENCING Of ProjJECE ..oiiiuiiiiiiiiiee et ebee e e s e e e s saeeeeesanes 6
Identification of the ProbIEM..........eii e e aaee e 6
[0 ST I (=T A T=T - 14 [0 o PP 7
[a1d=T g = ol [E] = o RS 8
Communication with others involved in the proposed system.........ccccccieeieeiiieeeciiee e, 10
Consideration of social and ethical ISSUESc.coceiiiiiiiiiiiiee e 10
Modelling your chOSEN SOIULIONuiiiiiiieeciee e s e e s e e e e e e e e e areeas 11
L T oY o 1T o ==Y a Yo I D ToT =g o= PP 18
Software Development APProachooiiiii it ere e e ebaa e e e eanes 18
FAF=LoYu L1 o W@ Y-] d o) o PRSP SUOt 19
Ty Y] (=T 0 T=Y o1 o [V SRR 27
[DLEIVZ=] foY o] Y=Y oY flo] @Yo =TRSO 27
[aaT el [T =T a1 = 14 (oY T =1 o PSP 29
LA LY=)ol Yo L= 35
BES A TaY =4 [o AV | LU 4 (o o WU 36
TS N e eeteieiietieieitieeeteteteeeeeeeeeaeaeearaaeseeaeaeesasesesesesnsesssnsesesesssnsnsnsnsnsnsesnsnsnsesnsnsnsnsnnnsnsnsnsnsnsnsnnnnnnnnnnnn 36
Y1 [V 14T] o PR PSP PR 43
Maintenance Of the SOFTWAIEcouiiiiiiiieeee et e 46

REQUIREMENTS REPORT

AIMS AND OBIJECTIVES | REQUIREMENTS REPORT

Purpose

This project endeavours to demonstrate competency and understanding of the C# programming
language through the documentation and development of a working graphical user-interface
game of Hangman. Through the utilisation of coding constructs, graphical interface design,
documentation and the structured programming approach, a Windows Form application solution
will be produced.

Functionality

The basic functionality of the solution uses only the mouse to emulate the gameplay of
traditional Hangman, continuing to improve spelling and literacy skills in its users. Much like the
classic version, an educational experience is delivered by allowing the player to attempt to guess
letters in order to reveal a randomly selected word. If a guess is contained in the hidden word,
the letter will appear in its correct position. If the guess is incorrect, a body part of the hangman
is drawn. The player has 11 guesses and if they successfully reveal the word before the hangman
has been completed, the user has won and should be congratulated. However, if the hangman is
complete before the word is guessed, then the player has run out of attempts and lost, a
condolence message offered. At any time, the player should be able to start a new game,

however, this feature must be protected from accidental use with an appropriate mechanism.

Interface Usability

As a graphical user-interface solution, the program provides an engaging and intuitive user
experience which supports the functionality necessary for its gameplay. The proposed software
solution is a Windows Form application which requires only the mouse as input hardware,
alongside a computer with a Windows-based operating system and a monitor. The interface
begins with a title screen that has a start button, establishing a positive first impression. Once
the start button has been pressed, a brief loading screen captures the player’s attention and
creates a seamless flow into the gameplay. The gameplay interface then allows the user to select
a letter from an alphabetical on-screen keyboard made from the class Button. Their chosen letter
is entered into an instance of TextBox which contains the current letter that will be guessed.
However, the player must click on a separate ‘submit’ instance of Button class to actually guess
whatever letter is in the TextBox. A red delete object of class Button is also featured in the on-
screen keyboard to allow the user to remove any guess. If they wish to choose a different letter
to what is currently in the textbox (as whatever is contained only becomes a guess once the

submit button is clicked), the user can simply click on a different letter on the keyboard and it

will replace their current guess. These submit and delete buttons prevent a letter from
accidentally being selected, and declutter the interface, greatly enhancing user-experience. Once
a guess is made, another ‘loading screen’ appears, to give a lifelike property to the Al through
an illusion that the computer is ‘thinking’. This increases suspense and provides a seamless
transition between interfaces. If the guessed letter is not in the randomly selected word, an
animated drawing of the hangman body part appears in the interface to indicate that their guess
was incorrect. This is an engaging way to display the hangman and a ‘next’ button appears with
the animation to allow the player to make their next guess (when they have sufficiently watched
the .gif). When the user returns to the interface, a static image of the hangman with the body
part just drawn is featured. The player has 11 guesses until the hangman has been completed.
Alternatively, if the player makes a correct guess, then the letter appears in its correct position in
the hidden word. Whether the guess was correct or incorrect, the interface then disables the
button for that letter so that the user is aware of and can no longer select letters which have
previously been guessed. This design choice reduces the interface clutter of a separate section to
display already-guessed letters. To further enhance usability, a button which allows a new game
to be launched at any time is featured in the on-screen keyboard but protected from accidental
use by a confirmation message. The interface also features a distinct form icon, so that the
application can be identified in the toolbar when the game is minimised. The simplistic, intuitive

aesthetic promotes ease of use and enhances user experience.

Security

Overall, the Hangman application contains minimal security issues as it does not involve the storing
of personal data or expose any vulnerabilities of a computer system. In particular, the information
stored in the provided external file is not sensitive and is publicly available, therefore there are no
security risks involved. Additionally, by using the File.ReadAllLines method, the stream is
automatically opened and closed. However, appropriate caution should still be taken regarding the
text file - say if the user chose to alter the word list file to include their personal passwords.
Additionally, if the capabilities of the application were extended, for instance implementing a
scoreboard which enabled users to enter their name, further security issues could arise. If the word
list file or another file was to store such personally identifiable or sensitive information, the
sequential access method should be replaced with a random access alternative such as a database.
Further, cryptology could increase security and reduce likelihood of interception by unauthorized

users.

Portability

Windows Form applications have limited portability, functioning solely on Windows desktops and
laptops as they require a Windows-based operating system. However, the versatility of traditional
Hangman gameplay lends itself to being extended in the future to work in browser or mobile. In
terms of the implementation itself, as Windows Form applications are not compatible with Android,
MacOS and iOS, and a web browser doesn’t directly interpret C#, broadening platform compatibility
would either require complete recoding or use of a different framework. This could involve
extending the existing codebase with a C# web framework such as ASP.NET, allowing use in a web

browser which broadens access scope to Mac, Linux and Windows. For mobile and Android

platforms, the .NET framework Xamarin could be leveraged to great effect. As the C# codebase
already exists, effort can be significantly minimised by utilising a framework which already

implements C#. Overall, this application has rich potential for portability.

Networkability

The developed Hangman solution does not contain any network operability as it is an application
designed to execute on the user’s independent device and its current gameplay is single-player only.
However, given the mechanics of traditional hangman, the application’s functionality has potential
to be adjusted for networkability by introducing multiplayer. Perhaps it could emulate the
traditional gameplay of Hangman where one player selects a word which the other guesses, or
rather a more contemporary style as a race to guess a

random word. This would require the use of a web

Web Server
framework as discussed in the previous ‘portability’ section
. T
such as ASP.Net. The use of a web server which]
communicates with the players’ client machines would Client 1 I/I C— I\ Client 2

enable the application’s output to display on each monitor

while obfuscating the code which could allow cheating.

This client-server topology can be viewed to the right:

OVERVIEW OF SYSTEM | REQUIREMENTS REPORT

Data and Information

The nature of the data used and produced by Hangman is centered around the functionality of its
gameplay, involving user input for the letters and program output for the monitor display. The
application is designed to receive input from the user’s mouse-click to trigger click-events on
buttons. These events then output information on the monitor, displaying the letter which the user
has selected in the textbox. Once the program has received a mouse input on the submit button, if
the letter was contained in the word, then the system will display the letter in its correct position. If
the guess was incorrect, the application will produce information for the graphical picture box. This
picture box is influenced by the data of how many guesses have been made. The computer also
stores data of the player’s state through the use of global variables — the number of guesses
remaining and whether the user has won or lost. Through continued mouse inputs, if the player has
revealed the entire word then the program will display a congratulatory system MessageBox.
Whereas if the player has failed to guess the correct word after 11 letters are selected, a condolence
message will be displayed. A message box is also produced if a click-event is triggered on the reset
button.

Software Structure

The structure of the proposed software solution is a Windows Form application which utilises an
external text file in conjunction with the use of programming constructs, data structures and

graphical interface instances. The program uses classes to build the interface, an instance of class

Button for each letter on the keyboard, TextBox to display the hidden word and the user’s current
guess, and PictureBox to display the hangman. These are combined with the use of an external text
file and the System.lO namespace to store the list of possible words. Numerous of these list and
array data structures are included throughout. Additionally, the System.Threading namespace
creates the pause in the ‘computer thinking’ effect with its Thread.Sleep() method. This software
structure creates an aesthetic and intuitive working Hangman application with an engaging and

distinct user experience.

THE BODY OF PROJECT DEVELOPMENT
REPORT (PDR)

DEFINING AND UNDERSTANDING THE PROBLEM | ror BobY

Timing and Sequencing of Project

The below Gantt chart illustrates the time frame of the project and clearly define application milestones.

WEEK 1 WEEK 2 WEEK 3

Complete Requirements Report

Complete Defining and Understanding

Complete Planning and Designing

Brainstorm Application Ideas] ARROWS INDICATE
DEPENDENCY

Construct Algorithms

Implement Algorithms in Code

Debug Errors

Complete Implementing
Documentation

Draw Hangman lllustrations

Replace Images With Graphics
Comment Code

Adjust Algorghms to Changes
Complete Testing and Evaluation

Complete Maintenance of the Software

Identification of the problem
Identifying the problem involves articulating the problem that the application must solve.
Typically, the problem would be identified through interviews with the stakeholders. However, a
thorough description of the problem has been provided which can be succinctly articulated into

the following points:

— Produce a working graphical user-interface game of Hangman, or alternatively Snowman,

designed to run in a Windows form application

2

must guess. This should be hidden.

A

Already used letters must be displayed on the screen

selected) a condolence message will appear

2

protected from accidental use

If the user guesses an incorrect letter, each body part is to appear or disappear

Randomly select a word from a list of words residing in an external text file which the player

If the user makes a correct guess, the letter/s must appear in their location in the chosen word

If a player successfully solves the word, the game will provide a congratulatory message

If a player runs out of guesses and the final body part appears or disappears (if Snowman was

A button should be accessible that allows a new game to be played at any time but must be

— The project must follow the structured approach and its appropriate documentation in a PDR

Ideas generation

While there were obviously numerous solutions to elements of the entire problem, for instance

how to choose a random word, these were categorised into three primary solutions which

could have been pursued:

SNOWMAN

This solution entailed the choice of the less

confronting game of ‘Snowman’.

To create a random word, rather than read

from a populated sequential file, this
option would extract the HTML data from
a webpage and read the lines as separate
items in an array. This would provide a
larger word pool.

A randomly generated number would
become the index for a word in the array
and then that word would become the
hidden word.

This word would be concealed under
numerous underscores as placeholders for
each letter.

The player could make a guess by typing
any letter on their hardware keyboard and
providing the letter hadn’t been guessed,
it would automatically be submitted.

An interesting idea for the Snowman
melting was to use multiple picture boxes
with animated .gif’s. A switch case would
allow each to become visible and play
when the appropriate part disappeared.
The congratulatory message would be a
large gif with a puddle (snowman melted)
and the words ‘YOU LOSE’. If the player
won, a .gif with ‘YOU WIN’ would be
displayed.

A possible solution to the restart button
was a button where the first click would
activate a timer and the buttons opacity
would gradually decrease. If the player
double clicked the button before 30

seconds, then that would be interpreted as

a confirmation and the program would
reset.

®
£X3

®
"

K3
£X3

e

0
”

HANGMAN ‘ORGANIC’

This solution was the most plausible and organic solution to
the problem, balancing traditional gameplay with Windows

Form capabilities.

A sequential file would be provided with the
application, filled with 200 words separated by a
comma. The line is read into the program and split
at each comma into an array.

The random class would select a random integer
that would solve the problem of randomly
selecting a word.

A for loop would produce a string which replaces
the letters with ‘_’ for the placeholders. For
aesthetics, a separate function would then add a
space between each placeholder underscore
before the hidden word is displayed.

An on-screen keyboard. The player can make a
guess by selecting a letter and to prevent
accidental guesses, they can select a different
letter which will replace their guess. This letter can
be changed but once they click the submit button,
the current letter in the textbox will become their
guess and checked against the hidden word.

A solution to display the used letters was to
disable the button for that letter.

If the letter matches a letter in the word, the
placeholder underscore at that point will be
replaced by the letter the user guessed by splitting
the target word into a character array and
replacing the item in the index.

To display a body part if an incorrect guess is
made, a switch case will make a separate picture
box visible with the new body part added.

A possible solution for protecting the reset button
was an extremely user-friendly confirmation
message box.

HANGMAN ‘POSTMODERN’

This solution closely resembles the ‘organic’

hangman version, however, features arguably

more distinct solutions to the problem.

0
£

0
0

®
"

0
"

Using labels instead of underscores to
represent the placeholders

Instead of making separate picture
boxes visible depending on the
number of guesses left, the program
could simply change the contents of a
single image box accordingly using
Properties Resources

Headset and audio involvement to
create an engaging and immersive
experience. For instance, when a
letter is selected the program makes
a beeping sound. Additionally, C#
provides the ability for an audio file
to be included in the directly which
can be played on command. This
could be used to emphasize the
players loss or congratulate the
player’s victory.

A possible solution for protecting the
reset button was a unique idea where
the player could type the word reset
with the on-screen keyboard and the
feature would trigger.

To replace the placeholder with the
correctly guessed letter, a more
readable .Insert() and .Remove()
method could be used instead.

In the end, no one solution was selected, instead a combination of all three categories

contributed to the ‘balanced’ final product. The cohesive benefits of each category were

extracted and implemented in the final application. The evaluation of the advantages and

SNOWMAN

ADVANTAGES (USED IN SOLUTION)
SNOWMAN

+ Selecting the random word by
generating a random number and using
it as an index was a clean and effective

solution

+ Underscores as placeholders
resemble the traditional hangman and
are a universal indicator of the game

DISADVANTAGES

- Extracting HTML from dictionary
website was a unique idea, however,
poses many security and legal issues

- Animated gif idea was definitely
interesting and unique. However, the
graphic of a snowman melting was
overly ambitious.

- Considering the project’s scope, using
timers and manipulating opacity in
Windows Form applications to protect
the restart button is ambiguous and
convoluted for the user

disadvantages of each solution which formed the final product can be seen below:

‘ORGANIC’ HANGMAN

ADVANTAGES (USED IN SOLUTION)

SNOWMAN

+ Reading from a sequential file was the

initial requirement provided, and although
the client stated either method could work
(reading site HTML), for legal reasons an
external text file is safer. Also, 200 words is
plenty enough for the program.

+ A for loop specifically can be used to
expand on the previous idea of generating
underscores as the placeholders in
‘Snowman’

+ An on-screen keyboard provides substance
to the application interface, creating a more
immersive user-experience. It also solves
the other problem of allowing the user to
see which letters they have already chosen.
The keyboard button could simply be
disabled.

+ Switch case to determine which picture
the picture box is changed to is a clean and
efficient ideas

+ Reset button protection simply being a
pop-up dialogue box is extremely user-
friendly

+ Function which would add spaces between
each placeholder underscore

DISADVANTAGES

- As a method to reveal the letter, breaking
the placeholder into an array of chars and
then changing the character at the index
where the two characters match is overly
complicated — even to explain.

SNOWMAN

ADVANTAGES (USED IN SOLUTION)
SNOWMAN

+ Use of the .Insert() and .Remove()
methods are an extremely simple and
clean alternative to reveal the correct
letters

+ By leveraging the Properties.Resources
method to change the contents of a
single image box, the application
designer can remain a lot neater (rather
than having layered image boxes). This
allows managing errors to be a lot
simpler. Additionally, changing which
images is in a textbox is a lot less tedious
than setting the visibility of multiple.

DISADVANTAGES

- Using labels seemed an obvious and
intuitive solution to the hidden word
problem. However, the limited style
options of labels weren’t entirely suited
to an aesthetic and consistent user-
experience. This includes the restricted
font size of the text and the inability to
centre the placeholders.

- While a unique idea to make the game
more immersive was to include audio
with Beeps, this reduces the inclusivity of
the application. The program’s full
experience is limited for low-income
households who may not be able to
afford a headset. It also could cause ear

pains to player’s with sensitive hearing.

- The idea of implementing the restart
command into the textbox is
undoubtably unique, but impractical
especially if RESTART is the target word.

The final idea is comprised of the advantages from these three main ideas. While originally a single

category was going to be chosen from the three, this decision to incorporate the advantages of each was

preferred as it enabled the program to have the benefits of three different perspectives.

Interface design

This section presents ideas for the chosen user-interface design to improve understanding of the
user-experience. While the application only uses one form, the Hangman application is
comprised of the central ‘gameplay’ interface, a ‘loading screen’ interface, a ‘cut-screen’
interface and a ‘loss’ interface:

The illusion of these separate interfaces is achieved by hiding specific elements - as detailed in

the ‘implementing’ section - and creates a distinct and immersive user experience.

This is the logo/icon of the =
placeholderDisplay is a textbox which shows the hidden target word and application and is featured on ' —
any revealed letters. Its central position serves to produce salience to the program title screen and =

emphasize its importance documentation. This could also
be replaced with a brand or =
stakeholder logo.

()
_/
The staticimage box (opposed to the.gifs) displays how many guesses the player
has left without the distracting animation of the .gif. This feature is symbolic of the
traditional game of hangman and allows the player to make an informed guess. Its onding on
incorporation in the main interface also justifies the purpose of the cut-screen (s guess osition
P : raw’ the i ; - the Us€ entral P
animation which can be seen to ‘draw’ the image displayed here. mits ming and C
4 a

. e with
: ox. This is for those
dlears any letter in the ot n their guess

tton ; i to envisio
[ii= delg t_e B:fc'es who may benefit from b?mg R
reading difficult pefore submitting.

The correctWord textbox only appears if the player has lost T S s 5
and notifies the user of the target word which they failed to
The loadingScreen guess.
textbox gains a dot
every 5 milliseconds,
creating a ‘thinking’ . . .
loading screen effect to

seamlessly transition
between interfaces

The animatedIimage picture box which contains a .gif which serves to create a cut-screen
effect. This immerses the player and contributes to a quality user-experience.

section, but in effect it pauses and hides the gif.

@ :1 b The taskbar icon allows the program to be easily identifiable when minimised 9

Communication with others involved in the proposed system

While application development should undeniably utilise regular stakeholder feedback and
external communication, due to the conditions of this project as an assignment and the thorough
description of the problem provided, completion was primarily independent. However, allocated
sessions of work in class enabled the project mentor/client to constantly remain in the process
and provide valuable suggestions. Any design queries and functionality questions were
immediately raised to ensure the product was as close to the envisioned program as possible,
and adjustments were made accordingly. By aligning application development and testing with
these crucial feedback sessions, the client remained involved throughout the process and their

feedback could shape the algorithms and software solution.

Although the project was completed solo, occasional collaboration was also conducted with
surrounding classmate developers to gain a different perspective from their solutions to the
problem. It also enabled a more effective and evaluated program to be reached. Further, a brief
guestionnaire was conducted with my family to select the most aesthetic and intuitive user-
interface and colours — where black and purple were seen as the most striking. As well, some of
the errors faced during development (detailed in the ‘implementing errors’ section) required
communication by reading forums by the broader coding community to find an appropriate

solution. Specifically, this was leveraged in the .gif implementation.

Overall, as the client will communicate with the developer in the classroom beyond this

assignment, development and refinement of the application can continue.

Consideration of social and ethical issues

Overall, the proposed application has reasonably minimal social and ethical impact in relation to
intellectual property, ethical consideration and inclusivity. Each Hangman illustration and the
application interface was hand-drawn in Adobe Photoshop. This avoids any copyright breaches
as Adobe products have licencing for commercial use. However, the .ico file for the application
icon, while sourced from a site which enabled its commercial use, appeared to be featured on
another site as well which contained the same icon except under a personal use licence. This
poses a unique ethical and legal consideration. However, | believe the source which enabled

commercial use was the original source.

The social impact of the application involves more considerations. Design choices which
considered inclusivity was crucial. The on-screen keyboard enabled the letters of the keys to be
bigger. Such feature could be extended by providing an option to decrease and increase font
size. This allows physically disadvantaged players to select the letters more easily as well as
visually impaired users to see the letters easier. Additionally, the gameplay mechanism to submit
the guess independently to choosing a letter broadens usability for users who may struggle with
reading, by enabling them to envision the letter. As mentioned, it also reduces pressure for

players who may struggle with dexterity.

However, considering the scope of the project, adjustments for all backgrounds were not viable
to be implemented. The project does undoubtably have potential for these improvements
though. For a visually impaired user, the game could integrate audio files of the letter chosen
and potentially dictate the placeholders if a letter is revealed or which body part was drawn if
the guess was incorrect. The code and computer system could be adjusted for different inputs if
a braille keyboard was used. In terms of cultural diversity, in the application’s current state the
word file could be adjusted to other languages. However, changing the external text file is not
obvious, and the current interface with its reset and delete buttons would continue to remain in
English. These do have potential to be translated. By integrating an option to choose a language
at the beginning of the Hangman, cultural diversity could easily be promoted. The application
does contain minor instances of secondary notation specific to Western cultures, such as red for
delete, which is less inclusive to differing cultural backgrounds. However, in ratio comparison the
application has already intentionally minimised use of symbolic colours and symbols to reduce

exclusivity and further improvements are viable and reasonably minor.

Another social and ethical impact is the premise of hangman, potentially considered
inappropriate for younger users. The graphics may be seen to promote violence by viewing a
figure being hung and dying, particularly in a country where capital punishment is illegal. If the
project had a broader scope, this could be overcome by changing the graphical animations to a
Snowman melting and providing a parental option to unlock ‘hangman mode’. Additionally, for
younger uses a difficulty setting could be implemented which could change the length of words

chosen and increase the number of guesses.

While social, legal and ethical implications were considered explored throughout the
application’s design, the solution has clear potential to further promote inclusivity which is

greatly advantageous to the celebration of diversity in education and in software.

Modelling your chosen Solution

To assist in developing a deeper understanding of the chosen solution, a range of modelling tools
have been developed. This begins with a level 0 context diagram, then a level 1 data flow
diagram and finally the input process output (IPO) charts necessary for each module.

LEVEL 0 DIAGRAM | Context Diagram

The context diagram is the highest level in a data flow diagram and establishes the context and
boundaries of the system to be modelled. By identifying the flow and interaction of information
between the system and external entities, it provides an improved perspective of the scope

under investigation.

H\—\“— Interface

- Interactions
ResetRequest ___
) Hangman Application System €— Guessed Letter
_
External Text Eile List of Words User
——Result of Guess —*

Request for List —————— —— Display Win or Lose
/ Message Box

LEVEL 1 DIAGRAM | Dataflow Diagram

The dataflow diagram illustrates the interaction between processes within the system and the
flow of data between these processes. However, as the Hangman application processes typically
read from public variables and rely on differing events to be used, the broader diagram below

represents the sequence of processes in the most effective and accurate way:

List of

External Text File Words 1. Read Word From
File
Target Word
Letter 2. User Makes Guessed)
User I —— — Guess Letter *+ 3 Guessis

Evaluated In Word

Result

Interface
Display 4. User
Result

MODELLING | Input Processing Output (IPO) Chart

An input, process, output chart is used to describe the data elements which will enter the
module, the process necessary to produce the output, and the output itself that will leave the

function. A chart has been created for each module:

Form1()

INPUT PROCESS OUTPUT

Windows Form application is 1. Hide all of the other elements so | Title screen and start button is

launched only the title screen and start displayed

button is visible

Makelnvisible()

INPUT PROCESS OUTPUT
All gameplay interface elements . Hide all of the elements except All gameplay elements are hidden

are visible the titleScreen, startButton,

nextButton, loadingScreen and

correctWord

12

StartButton_Click()

INPUT

Mouse input clicking on

startButton

PROCESS
1. Hide start button and title screen
(as now game has started)

OUTPUT
A hidden start button
Begin gameplay

Start()

2. Call Start()

INPUT

GuesseslLeft

No elements displayed on the
interface

No guesses or gameplay active

LoadingScreen()

PROCESS
Show ‘loading screen’ effect by
calling LoadingScreen()
Set guesses to 11
Hide staticlmage picture box
Show icon picture box
Disable animatedimage (prevent
Enable submit button
Enable delete button
Set letterGuessed textbox to

empty

OUTPUT

Seamless ‘loading screen’ transition
Set/reset guesses

Prevent gif from looping in
background

Allow use of submit and delete button

Prepare for gameplay interface

INPUT

Current program interface

MakeVisible()

PROCESS
Make gameplay elements

invisible

“n

Display a textbox which adds a “.
at a specified time interval to
creating a loading screen effect
Hide textbox once the ‘loading
screen’ is complete

Display gameplay interface

OUTPUT
Seamless loading screen transition

Gameplay interface displayed for use

INPUT
All gameplay interface elements

are invisible

PROCESS

Show all the elements except the
titleScreen, startButton,

nextButton, loadingScreen and

OUTPUT

All gameplay elements are displayed

correctWord

13

SelectTargetWord()

INPUT PROCESS OUTPUT

External text file full of words . Open, sequentially read and close Randomly selected target word

text file Target word concealed under
For each word in the text file read underscore placeholders

into a list Textbox displays concealed word
Generate a random number (with spaces)

Use random number as index for the

list (to randomly select a word)

Create a separate string which

replaces each letter in target word

with an underscore

Add a space between each

underscore

Set textbox to display concealed

word

AddSpacesForDisplay()

INPUT PROCESS OUTPUT

Placeholders string . Split placeholder into an array of its Textbox displays concealed
characters target word with spaces in
Set/Reset display string to empty between each placeholder
For the number of characters in the
placeholder array, add that character
and a space to the display variable
Set the text of placeholderDisplay to the
display string

ActivateButtons()

INPUT PROCESS OUTPUT
All buttons are deactivated 1. Setall buttons on the keyboard to All buttons on the on-screen

enabled = true keyboard are activated

14

Letter_Click()

INPUT PROCESS

Button of letter played guessed 1.

the player guessed

Set textbox to the text of the button

OUTPUT
Text box displays the letter the

player has chosen

DeleteButton_Click()

INPUT PROCESS

Delete button clicked 1. Set the text box of current guess

“n

to

OUTPUT
Remove any letter chosen/no guess is

currently active

SubmitButton_Click()

INPUT
Submit button clicked

PROCESS
1. Add a layer of protection so that
an empty guess isn’t made

OUTPUT

Guess is made and processed.

2. Call Start() to begin

SubmitGuess()

INPUT

Letter player guessed

PROCESS

For each letter in target word,
Target word compare it with the guessed
letter
If they match, add position to a
record of other positions which
match
For every position that matches,
replace the underscore with the
correct letter
Update the text box with the
concealed target word with the

letter that has been revealed

Add a space between each letter

before display

If no positions match, run
FailedGuess()

Call LoadingScreen()

OUTPUT

If the guess was correct, reveal the
letter in the placeholders string

If the guess was incorrect, a hangman
body part should appear and a guess
left subtract

Disable submit and delete button (as a
guess was just submitted so no guess
made yet)

Loading face interface (to increase

suspense)

15

FailedGuess()

INPUT
Number of guesses left

Loading screen interface

PROCESS

Subtract one guess from guesses
left
Call PlayAnimation()

Call CheckForLoss()

OUTPUT

One less guess left

Indicate a life was lost

If the player has lost, display loss
interface

PlayAnimation()

INPUT

Loading screen interface

NextButton_Click()

PROCESS

Set a ‘next’ button to visible
Call Makelnvisible()

Show and enable animated image

box
Use switch case to choose which
.gif image is displayed

OUTPUT

Animated ‘drawing’ cut-screen of the
hangman body part according to
number of guesses left

‘Next’ button for when user is ready to

make their next guess

INPUT
Next button clicked

PROCESS

Hide next button

Call MakeVisible() to return to
gameplay interface

Hide and disenable animated
image box

Use switch case to choose which
static image is displayed

If case is 0 (no guesses left) then
display textbox which contains
word

OUTPUT

Interface returns to gameplay
interface

Static image is included on the
interface which changes according to

number of guesses left

Display loss interface (specifically once

the next has been clicked)

16

CheckForLoss()

INPUT

Number of guesses left

PROCESS

If number of guesses left is less

than 1, set letter guessed text to
“YOU LOSE”
Disable buttons on the on-screen

keyboard

OUTPUT

Provide condolence message
Disable on-screen keyboard (as loss
has occurred)

CheckForWin()

INPUT PROCESS
Placeholders string 1. |If there are no placeholders in the
placeholders string (no
underscores), set letter guessed
text to “YOU WIN!”

Disable buttons on the on-screen

OUTPUT
Provide congratulatory message
Disable on-screen keyboard (as win

has occurred)

keyboard

DeactivateButtons()

INPUT PROCESS
All buttons are activated 1. Setall buttons on the keyboard to

enabled = false

OUTPUT
All buttons on the on-screen

keyboard are deactivated

FormClose()

INPUT

Form closing

PROCESS
1. Trigger a message box to pop up
which asks “Are you sure you
want to exit?”
If player selects no, cancel the

form closing event

ResetButton_Click()

OUTPUT
Protects form from being accidentally

closed

INPUT

Reset button clicked

PROCESS
Trigger a message box to pop up
which asks “Are you sure you

want to reset?”

If player selects yes, call Start()

OUTPUT
Protects gameplay from being
accidentally reset

Restarts game

17

PLANNING AND DESIGNING | ror 8opy

Software Development Approach

As the most suited software development approach to larger projects with a long history of
successful use, the structured development approach lends itself to the specific nature of the
Hangman solution. While team discussion and decision of this approach was only conducted by
the developer as the hangman project was completed solo, extensive deliberation and
justification still occurred. The minor variation in development requirements from the
comprehensive problem definition and clear gameplay instructions of the project lends itself to
this decision. While a significant disadvantage of the structured approach is that each stage in
the process usually cannot be started until the previous stage is complete, the definite objectives
of Hangman are well-suited to the thorough planning required as a result. Further, each deadline
estimation can be reasonably accurate as the features won’t expand. Thus, the resulting efficient
time management can enhance the quality of the final application and is extremely appropriate
to the long nature of the 5-week project. The structured approach also allows back-tracking to
the previous stage in case a problem is discovered. This lends itself to software development,
particularly as a learning developer, and its structure discourages procrastination. This report
follows the 5 stages of the approach: defining and understanding the problem, planning and
designing a solution, implementing the solution, testing and evaluating the solution and
maintaining the solution. By employing the thorough process of the structured approach, a well-

considered and justified product with effective documentation has been produced.

18

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Algorithm Creation

BEGIN Form1
Makelnvisible

END Form1l

SET guessedLetter as public

SET guessedLetterChar as public This part of the algorithm is not included in any function as
they are deliberately defined outside any module to be

SET targetWord as public
SET placeholders as public

SET guessesLeft as public

BEGIN_Makelnvisible
Hide all elements of the gameplay interface

END Makelnvisible

BEGIN StartButton_Click
Hide startButton
Hide titleScreen
Start

END StartButton_Click

BEGIN Start
LoadingScreen
SET Guesses to 11
SET staticlmage to StaticO
SET iconlmage to Icon0
Enable animatedimage
Disable submitButton

Disable deleteButton

used as public variables. This is a result of the event-based

subroutines of Windows Applications Forms.

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

SET textbox letterGuessed to “”

SelectTargetWord

ActivateButtons

END Start

BEGIN LoadingScreen
Makelnvisible
Show loadingScreen textbox
FORi=0TO 4 STEP 1
Update interface
Add “.” to loadingScreen textbox
Wait 500 milliseconds
NEXT i
Set loadingScreen textbox to “”
Wait 500 milliseconds
Hide loadingScreen textbox

MakeVisible

END LoadingScreen

START MakeVisible
Show all elements of the gameplay interface

END MakeVisible

START SelectTargetWord

SET path to file "words.txt”
Create new list wordPool
Open words.txt file for reading

Read all lines from words.txt into an array of lines

20

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

Close words.txt file

numberOfWordsInPool = 0

FOREACH line IN the array of lines STEP 1
wordslInFile = Split each line into words at the comma
numberOfWordsInPoolAdjustedForindex = length of wordsInFile - 1
FOR i =0 TO numberOfWordsInPoolAdjustedForindex STEP 1

Add wordInFile (i) to wordPool

NEXT i

NEXT line

randomIndex = Get a random number

SET targetWord to wordpool (randomindex)

awn

SET placeholders to “” to remove text

FORi=0TO length of target word STEP 1
Add “_" to placeholders

NEXT i

AddSpacesForDisplay

END SelectTargetWord

START AddSpacesForDisplay

GET placeholders
splitPlaceholders = placeholders string split into separate characters
SET display textbox to “”
FORi=0TO length of placeholders STEP 1
Add splitPlaceholders (i) to display
STEP i
SET the textbox placeholderDisplay to display

END AddSpacesForDisplay

21

85 START ActivateButtons

86 Enable all buttons on the on-screen keyboard
87 END ActivateButtons

88

89 START Letter_Click

90 GET letter
91 SET the textbox letterGuessed to letter
92 SET guessedLetterChar to letter

93 Enable submit button

94 Enable delete button
95 END Letter_Click

96

97 START DeleteButton_Click

98 SET letterGuessed textbox to “”
99 Disable submit button
100 Disable delete button

101 END DeleteButton_Click
102

103 START SubmitButton_Click

104 IF guessedletter <> “” THEN
105 SubmitGuess
106 ENDIF

107 END SubmitButton_Click

108

109 START SubmitGuess

110 splitTargetWord = split target word into characters
111 SET positionsOfGuessedLetter to empty list

112 SET letterPosition to O

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

LoadingScreen

FOREACH letter IN splitTargetWord
If guessedLetterChar = letter THEN
ADD letterPosition to positionsOfGuessedLetter
SET letterGuessed textbox to “Correct!”
ENDIF
letterPosition = letterPosition + 1
NEXT letter
IF length of positionsOfGuessedLetter = 0 THEN
FailedGuess
ENDIF
FOREACH position IN positionsOfGuessedLetter
Placeholders = remove placeholder at position and insert with guessedLetter
NEXT position
Clear positionsOfGuessedLetter

AddSpacesForDisplay

CheckForWin
Disable SubmitButton
Disable DeleteButton

END SubmitGuess

START FailedGuess

guessesLeft = guessesLeft - 1

PlayAnimation

CheckForLoss

END FailedGuess

START PlayAnimation

23

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

Show nextButton

Makelnvisible

Enable animatedimage

Show animatedimage

CASEWHERE guesses is
10 : SET animatedimage to Framel
9 : SET animatedimage to Frame2
8 : SET animatedimage to Frame3
7 : SET animatedimage to Frame4
6 : SET animatedIimage to Frame5
5 : SET animatedIimage to Frame6
4 : SET animatedimage to Frame7
3 : SET animatedimage to Frame8
2 : SET animatedimage to Frame9
1 : SET animatedimage to Framel0
0 : SET animatedimage to AnimatedLose

ENDCASE

END PlayAnimation

START NextButton_Click

Hide nextButton

MakeVisible

Hide animatedimage
Disable animatedimage
Show staticlmage
CASEWHERE guesses is
10 : SET staticimage to Staticl

9 : SET staticlmage to Static2

24

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

8 : SET staticlmage to Static3

7 : SET staticlmage to Static4

6 : SET staticlmage to Static5

5 : SET staticlmage to Staticé

4 : SET staticlmage to Static7

3 : SET staticlmage to Static8

2 : SET staticimage to Static9

1: SET staticlmage to Static10

0 : SET staticlmage to StaticLose
Show correctWord
Display “THE WORD WAS “ + targetWord
SET image of Icon to Icon2

ENDCASE

END NextButton_Click

START CheckForLoss
IF guesses <1 THEN
Display “YOU LOSE”

DeactivateButtons

ENDIF

END CheckForLoss

START DeactiveButtons

Disable all buttons on the keyboard

END DeactiveButtons

START FormClose

End = Display a message box “Are you sure you want to exit?”

AS)

197

198

199

200

201

202

203

204

205

206

ploy

208

IF End = no THEN
Cancel the form from closing
ENDIF

END FormClose

START ResetButton_Click
Restart = Display a message box “Are you sure you want to restart?”
IF Restart = yes THEN
Hide correctWord
Start
ENDIF

END RestartButton_Click

PAS)

IMPLEMENTING | ror BODY

Development of Code

Flusing System;
using System.
System.
System.
System.
using System.
System. Text;
System. Threading.Tasks;
using System.Windows.Forms;

Collections.Generic;
ComponentModel;
Data;

Drawing;

Ling;

bbreviated from system input/output,
to perform reading and write operations
using System.IO;

this namespace contains clas
In th

on difference sources.

1 /*This provides a class for contro g and accessing threads among
14 a "thinking" loading screen with Thread.Sleep()*/
15 using System.Threading;

FORM1() 4

This code is provided default with the Windows
Forms Application .NET framework, initializing the
design components for the form. However, the
Makelnvisible() function was also added as the
program should launch straight into the title screen,
hiding the actual gameplay elements. This function
sets the visibility of the on-screen keyboard and other
objects to false so that only the title screen image and
button is visible.

NAMESPACES (class organisation)
Alongside the default namespaces provided with
the .NET Framework, the program begins by
adding System.lO and System.Threading. This
allows the use of the file.ReadAllLines() and
Thread.Sleep() methods. ReadAllLines opens the

ses a) external file, reads all of its lines into a string
is cas external text file to be read into the program*/ array and then safely close the file again, while

other abilities, used in the program to pause the interface and create the thread.Sleep() is used in the program’s

E)

‘loading screen’ animation to add a pause

Cnamespace _Jade Harris Hangman
{
4 references
public partial class Forml :

{

Form

1 reference
public

{

Forml()

//Required method for designer support
InitializeComponent();

/*Wh

all of the element

h
- for program readabiltiy and logic*/
MakeInvisible();

en the program is launched, (rather than setting them all to vi

PUBLIC VARIABLES

These variables are deliberately not defined or initalised in any specific module as they serve as public variables. Because of the nature of the event-called functions, passing
variables as parameters to functions does not work. This method allows the target word, guessed letter, placeholder string and number of guesses left to be accessed by

numerous functions. For instance, the function which chooses

the word and creates the placeholder string accordingly would not be able to just pass and call the placeholder

string into the Letter_Click function as the function is waiting to be triggered by a click event. This is a simple solution.

d MakeInvisible() //M

ible
b.visible
c.visible
d.visible
e.visible
f.visible
g.visible
h.visible
i.visible
j.visible
k.visible
1.visible
m.Vvisible
n.visible
0.Visible
p-Visible
q.visible
r.visible
s.Visible
t.visible
u.visible
v.visible
w.Visible
x.Visible
y.visible
1.visible
submitButton.visible = fal
deleteButton.visible =
letterGuessed.visible =
resetButton.visible = false;
placeholderDisplay.visible = false;
keybcardBackground.visible = H
guessedLetterBackground.visible = false;
staticImage.visible = false;
icon.visible = false;

al!
al.

3 [/Letter which the player wishes to test against the word they are guessing --» global as necessary for numerous functions
31 Button guessedlLetter;

32 f/Current letter --> global as necessary for numerous functions

33 I char guessedlLetterChar;

34 f/Word which the player will guess --» global as necessary for numerous functions

35 string targetWord = "";

3 f/5tring represents the target word which will display --»> global as necessary for numercus functions

37 string placeholders = ™";

38 [/Integer which contains number of guessesleft --» global as necessary for nuemrous functions

3 int guessesleft;

MAKEINVISIBLE()
This module hides the on-screen keyboard, textbox which displays the placeholders, static image
and icon image invisible to create the illusion of separate interfaces of a loading screen, cut-screen
and title screen.

Lreerence

[M—

private void StartButton_Click(object sender, EventArgs e) //Start the game when start is clicked
a {
5 //Hide start button and title screen image once the player has chosen to begin
startButton.Visible = false;
7 titleScreen.Visible = false;
//Call start function
Start();
}

STARTBUTTON_CLICK()
This module triggers the start events to occur when the title screen start button is clicked. By hiding
the titleScreen picture box (to create the effect the user is moving from the title screen to in game)
and making the start button invisible, this aesthetic addition is successfully achieved and provides a
clean transition. The start button is only the used on the first time the game is launched, hence why
Start() is a separate function so that it can be triggered by other events too (restart).

START()

Called from either a click event from the start button when the player first launches the application, or from the reset button if they choose to respond to the message
box “Would you like to restart?” with a yes — this function starts/restarts the game. The function begins by calling the LoadingScreen() function, a ‘thinking’ cut-screen

designed to create a smooth transition. While guesses is defined but not initialized as a public variable, it is given a value here. This is because if the player chooses to

restart, by only running this function, the number of guesses can be reset as well. The module then sets the images of the static image box to image 0 — an image of a

black box to make the hangman appear invisible (particularly important when a game is reset as the number of guesses is reset too). This could have been achieved by

hiding the box, but changing the image is more consistent with the switch case. The module then sets the icon image as well, a minor design flair which contributes to
the overall aesthetics. Any .gif’s currently running are paused (precaution) and the submit and delete buttons for the keyboard are disabled (as now the keyboard is

visible but no guess has been made yet). Rather than simply having code which prevents the user submitting or deleting an empty guess, it makes more sense for the

interface to disable these buttons from use at all. The next line resets any guessed letter (or sets the textbox which displays the user’s current guess) to empty. The

module then calls the separate SelectTargetWord() and ActivateButtons() on the keyboard then the user can make their first guess.

LOADINGSCREEN()

This module contributes to usability and aesthetics, which enhance the overall
user experience and player engagement. This module attempts to create a loading
screen and ‘thinking’ effect to add a distinct flair to the game interface. Firstly all
of the main gameplay elements are made invisible then a textbox is shown which

" effect. This creates the illusion the computer is ‘processing’ and is
achieved by using the Thread.Sleep() namespace in combination with a for loop to

printsa “

private void start{) //This pdule to start/setup
i

/fCreate a seamless transition effect

LoadingScreen();

/fset or reset the number of guessesLeft to 11

guessesLeft = 11;

/fset the image of the static hangman to statice - a blank bo

staticImage.Image = Properties.Resources.statica;

/fset the image of the icon to
icon.Image = Properties.Resources.Icoml}

f vent the animated .gif from beginning
animatedImage.Enabled = false;

Icond - the first icon

54

m

1]

that it is

add another “.” to the textbox each 5 milliseconds. 5 milliseconds is an optimal e the submit button disabled until the player cl a letter
amount of time as it retains player interest without becoming tedious. The submitButton.Enabled = false; } N i
ffMake the delete button disabled until the player clicks a letter
Application.DoEvents() is expanded on in the later ‘TESTING’ section of this deletesutton. Enabled — fal <e;
report,. In effect, it was a workaround for an issue Thread.Sleep() exposes in lettef';.le:;; T;;iffq extbox
Windows Forms applications. Once the loading screen has ‘complete’, the textbox /fAccess external sequ ential file to randomly select and set the target word
is set to empty and hidden prepared for the next function call, and the gameplay fflfﬁr:rfe?“.]m“;l e T i T S (TS RS
elements prepared for their next use. ActivateButtons();
. 114 H
vold Loadingscreen() //Display the "thinking loading screen’
f/Make all of the cbjects inwisible to create a loading screen 'loading screen’ effect
MakeInvisible();
ffMake the textbox which will centain the ° visible
loadingscreen.visible = true;
f/To add the 2 dots which indicate a loading screen, this for locop adds a dot then walts to create an animated "thinking' effect
for {(int 1 =8; I < 4; 1I++)
i
f* icsue wi updating it.
As a solu mn, .,jll_ct_ the thread is paused
Application.DoEvents();
f/Display a dot or 1f one already exists, add the next dot
loadingscreen.Text += ". "3
f/wait 8.5 seconds before displaying the next '." for the "thinking®' effect (58@ miliseconds)
Thread.Sleep({5e8) ;
eset the text box to empty so that the next time the loading screen is displayed, the dots start from 8
adlngScreen.Te:rt = 5
f/Walt anocther 8.5 seconds to add a longer delay
Thread.Sleep(s8a);
ffMake the textbox invisible so it does not interupt the player's next guess
loadingscreen.visible = false;
f{/Make all of the gameplay elements visible again like the on-screen keyboard so that the player can make a guess
Makevisible();

b.visible = true;

c.visible = true;

d.visible = true;

e.Visible = true;

f.visible = true;

g.visible = true;

h.visible = true;

i.visible = true;

j.visible = true;

k.visible = true;

l.visible = truej

m.Visible = true;

n.visible = true;

o0.visible = true;

p.visible = true;

g.Visible = true;

r.visible = true;

s.visible = true;

t.visible = true;

u.visible = truej

v.visible = true;

w.visible = true;

x.Visible = true;

y.Visible = true;

z.visible = true;
submitButton.visible = true;
deleteButton.visible = true;
letterGuessed.visible = true;
resetButton.visible = true;
keyboardBackground.Visible = true;
placeholderDisplay.visible = true;
guessedLettersackground.visible = true;
staticimage.visible = true;
icon.visible = true;

MAKEVISIBLE()

or, if it the end of the game, see if they have won or lost and what the target word was.

28

This module reverses Makelnvisible(), showing all of the gameplay elements to allow the player to guess a letter

E ;vA.:: vold SelectTargetiWord()

{
/ ; 2 path. ,_:g“v.um:-hlrti‘;
Listcstring> ;ordééol = new ;;;t;»'“-'»;é):r
L iees 1 .; ilné;;.Vriig,Re;dAilLin;s(p;th)L%a;isi(); 7
¢ émMrﬁsInP;ml = e; ; s !
E fureaq_;; (st q .un; xn.ll.nes)
{ .
v all v‘uordsInFilé ~ l‘Sne.Sputk‘.');
nmberof-;torﬂ‘sln;\m-l ~ v‘loc-dsln;'ue.L;ngth;
E ?u; (A‘lzb 1 =83 1 < n;nt;er;oﬂhrﬂ;s;mmll - 1;- 1:4))
uo;:dPoo.l‘.Ma(wm’jsln?‘ile[ij); ‘
}
}
Fn:xdv;r; rand;:ml'ndejxl-_ 2.:.‘\&;"7\(‘);
targetuo;é.-‘;ordPool[randomiﬁaex4ﬁext(e, nﬁﬁmégcﬂikwﬂslnﬂool - 1)1;
plar;eholaetrsﬂ-: -
E for (int 1 - 9;‘& < tar;etuotidACon:mt‘(); S~) : :
{
placeholﬂers += "_'; .
3}
mé;esFo;‘(‘JXsplay(); ‘
}

SELECTTARGETWORD()

This module selects the random target word by reading the external text file and then conceals it beneath underscore placeholders. Called after the Start or Restart function is
called, this segment of code serves to select a target word (replacing or setting a new word). By using the File.ReadAllLines method, the external text file (words.txt as defined by
path) is opened, and placed into an array and then closed. The .ToList() function is used due to developer personal preference, as the list data structure has a simple and readable

.Add() function. The number of the words in the pool is also defined outside of the for loop for readability. Each line in the words file is then separated at the comma and added
to an array as separate elements. This array is read into a for loop which goes from 0 to the number of words in the word pool — 1 (this is necessary as by default for loops start at

0 so this prevents the loop attempting to add an empty array element to wordsinFile. Each word in the array is then added to the WordPool list. A random number is generated

using the random class which is then used as the index to select a random word from the pool of words. This is how the random word requirement is achieved. The global
variable target word is then set to this word. In the most readable way, to create the placeholders that conceal the word, a for loop is simply used which goes from 0 to the
number of letters in the word (-1 as the for loop starts at 0) . This adds an underscore to the global placeholders variable. For aesthetics, a separate function which adds spaces in
between these underscores is called. While here the ‘placeholders’ variable could be passed through as a parameter, it is already a global variable so this would be redundant.

é private void AddSpacesForDisplay() //Add a space between each underscore or character before g the hidden target word for vis usability and readabilit;
{
Convert each '_" or revealed letter, also known as a character in the string, to an array of characters (basical plit the string)
char[] shownText = placeholders.ToCharArray();
the d 1iring so the += Qo sn't ke a pre string
— 1n The target word cal a by CZ\."__i"g the characters 1n the split sTring
=] @; i ¢ placeholders.Count(}; i++)
L ¥
placeholderDisplay.Text = display;
H
private void ActivateButtons() tt
{
a.Enabled ADDSPACESFORDISPLAY()
b Enab1ea
B This module adds a space between the underscores and/or any revealed letters by
5 e.Enablea o A . .
= : splitting the string into an array of characters then adding the character itself and a
ACTIVATEBUTTONS() AT ULUNE) & et i _
The final subroutine called from the = 1oenanned space and combining the string again. The placeholderDisplay textbox then displays
255 j.Enabled
: . 5 this more readable progress indicator as it now has spaces in between.
start button, this module simply = B prog p
. 25 .Enabled
activates the on-screen keyboard so = - Enasied
261 o.Enabled
that the player can make their first 2 e
26! r.Enabled
. o it
bt LETTER_CLICK()
w.Enabled
it Whenever a letter is selected, this module enters the
z.Enabled

selected letter into the guessed letter text box to indicate to
the user that it is the letter that will be guessed once they hit

submit. This dynamically stores the current guessed letter
for use if the player hits submit. Once a letter has been

he player current chosen letter as t

visplay the player s current chosen lette submitted, the submit and delete buttons also become
letterGuessed.Text = letter.Text;

u r's guess to the sender button (for use when submit is clicked) enabled for use (asaguess has now been made)

guessedletter = letter;

Stores the gue
284 guessedletterChar =

submitButton.Enabled

deleteButton.Enabled = true; 29

B private void DeleteButton Click(object sender, Eventargs e} //When delete button iz clicked

{
//Remove any letter chosen (current gu is displayed in the letterGuessed tex
letterGuessed.Text = "";
f/Make submit and delete button disabled until letter is clicked again to prevent exce: e use that may result in software malfunction
submitButton.Enabled = false;
deleteButton.Enabled = false;
| b4
SUBMITBUTTON()

DELETEBUTTON()
Intended for those who require learning aid to assist them in visualizing their guess before submitting, a delete button to clear the
textbox with the current guess is provided by setting the text to empty. This also disables the submit and delete button for usability as
there is now nothing to submit.

Additional safety-guard to prevent user
from entering an empty guess (for
instance if their machine is slower

functioning and does not disable the
submit button in time). This also sets
the letter that the user has guessed to
disabled so that it cannot be used

private void SubmitButton_Click(cbject sender, EventArgs e) //Player submits a guess
{ .
/{Prevents error if playe en no lette by checking 1F the text is empty again, and also so the player can keep
if (letterG d. Text != .
g A track of which letters they have already
//Once letter has been guessed, clears textbox to emable next guess
letterGuessed. Text SeIeCtEd'
//Using the button va lett en any lette clicked), ess its properties and disable the letter (to prewent same letter being chosen again)
guessedLetter.Enabled
/Call the submit puess function - this mainly makes the code more readabl
SubmitGuess();
3
T
private void SubmitGuess()
{
char[] lettersInTargetiord « targetWord. ToChararray(); SUBMITGUESS()
t ¢ list of integers which will i This module executes when the
Listcint) positionsOfGuessedietter = now Listcinty(); . .
e PR S e person enters their guess — either
o e a0 called from the start button click
LoadingScreen(); subroutine or on reset. The module
S R should evaluate the guessed letter
H Z'D'cxh (char letter in lettersInfargetiord) against all letters in the target word
5 s N abtarthar tkhe suessad Jokts and if there are no matches, then it
= if - q a 0
' : sk ek et atiin) was an incorrect guess, otherwise it
add the positi th ent lottor in t should reveal the letter in the correct
positionsOfGuessedietter.Add(letterPosition); . . .
S P i B e SO position/s, It begins by splitting the
) letterGuessed. Text « “Correct!”; target word into an array of its
focaus 2 characters. A list of integers which
) e contains the positions of the guessed
letter is also created — this is necessary
H 1!‘.(pcsitionwfﬁutsse&u.:ttcr.Ccunt() -~‘9) i as there may be multiple positions.
The loading screen is called for user-
FailedGuess();
} experience, creating an effect as if the
e e s computer is thinking about their
= foreach (int position in positionsOfGuessedietter) result. Then, for each letter in the
{ -
odify isplayed text t the unders t the positi then insert the g 2 target word, it will be compared
placeholders « placcholders.Remove(position, 1).Insert(position, $"{guessedietterChar}"); against the guessed letter. This is
1 .
lear/reset the list of positio stored as a global character variable
itionsOfGuessedietter.Cl 4 - - .
T s e) which is updated on LetterClick(). The
Jisplay the updated hi loss condition is achieved by counting
AddSpacesForDisplay(); P
the length of the array, if it is empty
WaeAy then there have not been any matches
so the player has made an incorrect
submitButton. Enabled - 3 guess.
deleteButton. Enabled « false;
}
=| public woid FailedGuess() Display condolence message
{
wtract one puess FAILEDGUESS()

guessesleft -= ﬁ]
PlayAnimation();
Check if the n

CheckForLoss();

This module is called if the guessed letter was incorrect and not

contained in the target word. This subtracts one guess from the

global guessesLeft variable, calls a module to play the hangman
animation and then calls a subroutine to check for loss.

30

etter is in the target wor

= foreach (int position in positionsOfGuessedletter)
i
1 fodify the position and then insert the guessed letter character instead
placeholders an, %£"{guessedLetterChar}");
}

1 rfreset the list of positions of the current g

5 51T10ns O Che current guessed letter in preparation for the next Euessed letter

positionsOfGuessedletter.Clear();

Display the wpdated hidden word with the now re letters and add a space in between for visual aesthetics
AddSpacesForDisplay();
Check if the player has won
i CheckForkin();
Make submit and delete button disabled wntil letter is clicked to prevent excessive use that may result in software malfunction

submitButton.Enabled = false
deleteButton.Enabled = false

SUBMITGUESS() CONTINUED...

If this occurs, a separate failed guess function occurs. However, if there are positions (this will just be skipped if there aren’t), the remove and insert methods are used to reveal
the letter. The remove method simply returns a new string which removes 1 letter from that specific position. The insert button is then used to insert the correct letter in the
position. This is achieved by using string interpolation (prefixing the string with $ then adding the variable in {}) in the Insert method'’s string value input. This inserts the guessed
letter at the position/s — this code is specifically useful for efficient and readable code when there are multiple instances of the same letter in a word. The list of positions is then
cleared for its next use, spaces are added to display the word by calling the AddSpacesForDisplay() function (and as all of the string modification occurred on the global
placeholder variable) and the CheckForWin() module. For program consistency, once the player has submitted a guess the submit and delete button is disabled again as there is
now no current guess (because the guess was just submitted and text box set to empty).

I pubilic vald Maylainatisa() //Display the anisatod
maxtButton Vi i.bh- t .--.-
Hahlnri;;bl;l:]-. e
mmlﬂﬂ;’.'l’iiiblt.' H
m;nm@:imlu -t -

sufitch éé—e::t:uﬂ_]

PLAYANIMATION() —
This subroutine achieves the animated drawing ..';;.;..,;.;5,_;..5, . m,mm,. s Frommi:
hangman by utilising a number of .gif assets uploaded e

in the program’s resource folder. To create a cut- Lf tha pl Lat lea ’
aninatedinage. Inage = Propertiss . Aosourcos . Framadly

screen effect, all of the gameplay elements are set to Baaky
invisible again, but a ‘NEXT’ button is revealed. The o S:'. I 3 Lt inc .
explanation for this addition is included in the oo A - e s frees
‘TESTING' section, but this allows the user to complete case T =
the cut screen and continue. This was mainly a animatedlaage. Tnage = Fropertiss fesourcas.Framed;
response to the infinitely looping .gifs (graphics :as.*b::“;
interchange format), but ultimately became a better Hi;r;ﬂh;e*-l-m . w,;,:,'.mu, cos_Frosaf:
addition than originally intended. The image box ‘m“;‘__‘“'-
which contains the .gifs then is set to visible and “-i;';“u;u_tw : wm" e
enabled, this allows the .gif’s to play. Depending on -
how many guesses the player has left and therefore . ‘ tha Bl . 1aFt isa .
what stage the hangman should be, the image box is :‘:::"’L""'“"' = Propartlac. Racourcar. framr;
set to a different gif. These animations were designed e N
specifically for the game and leverage Adobe aatmutadimags. Tnige - Prapartiss fi<ourcos Frasal;
Photoshop to achieve their effect. This is how the :iseb;:“i

animated .gif effect was achieved however, and it e e e

makes for a unique and engaging gameplay :mb;‘_f“'-
experience. If tha pl 1 Lt 1 y
anlmatedinage Inage = Proparties Aosourcos. Framaly
Eridie |
Cata B

anlsatedlnags Inage - Proparties Aoscurces.LoseFull)
Eriak

31

II- Tt 1d Maet CLick(:

netiutton. vicible = false;

amﬂmga.&mlm = False;
suticmp:vuihle 5
swilteh [émmtﬂt:

cace 1@

static Tnags. Inags =
braaky
= L H

staticImage. Inage =
[
caca B:

staticImags. Inage =
braaky
aca 7

staticlegs. g =
braaky

(=% H
sutiﬂng?.‘hm -
e

caca 5
staticlmge. Inage =
[T

case 4:
sutiﬂuge..lngn -
e

ace 3
staticImage. Inage =
braaky

case I

staticlege. Inage =
Braak

case 1t
staticImags. Inage =
braaky

caca @:

staticInags. Inage =
émm.vlsmh -

COFTRrthord Tast = “THE WD WAS =

bk

void CheckForieoss() //cCh

sender, EvantiAngs)

.‘-\;\.ul'.l \.Su:ic1_
.'-:\n.ul'.l \..Sull:Ic.I.
.'-:\n.ul'.l \..SHI‘:IE‘B.
.‘-:\n.l.ll'.l \..SI’JI‘!iC‘A.
Suciurcos. StaEics;
P \.Sull:ic.ﬁ_
Seurcas. Statieds
| \.\._u.-.. ——
I —_—

Buscurces Statlcid;

targnn.nmﬂ mpwt]

Leon. Iuage = D'mpwnﬁn u‘-.icmh

Pt b Suselrdes Staticl e

NEXT_CLICK()
Hebaisiblad) s
L This button click event can only be activated following the
ml.lattd.Luga Visibla = false:

PlayAnimation function, allowing this module to act as a
sort of ‘skip’ or finish’ cut-screen feature to return back
to the gameplay. Once the player has watched the
animated drawing adequately, once they click ‘next’ they
will be able to make their next guess (or if they have lost,
the keyboard will be disabled). Specifically, a static image
of the stage of the hangman will display when they return
back to the on-screen keyboard. This function achieves
this effect by hiding the button once it has been pressed
and making all of the gameplay objects visible again
(returning the player to the ‘guessing’ screen). The
animated image, which was previously playing, will be
hidden and disabled to prevent the .gif from infinitely
looping. A switch case is used depending on the number
of guesses the player has left to indicate which stage the
static hangman should be on. Each of these cases simply
set the static image box (smaller image box) to the
appropriate illustration. However, if the player has no
guesses left then case 0 is executed, indicating the end of
the game. This case simply sets the image to the ‘dead’
hangman drawn and reveals the correct word. The icon
image is also required to change as the purple bar alters
the interface.

CHECKFORLOSS()
This module is called after the switch case occurs and the

player has triggered the next button. This simply checks

IFIF ayer has no guesseslLe <1 e 15 over
B if (gtlessesLeft < 1) : If the user has no guesses and then state YOU LOST and
t PEIE N SR deactivates the on-screen keyboard. It is included
letter'Guessed Text separately for readability and code logic.
[{As game ove ET a ne o
Deactl\ra‘teﬂuttons{),
i

CHECKFORWIN()

This function is called after the play has made any guess to check if a win event has occurred. This is achieved by simply checking if the placeholder string does not contain any *_’
which would mean that the player has successfully guessed all of the letters. The player is notified by receiving a congratulatory message ‘YOU WIN!' in the textbox. In addition,
the on-screen is disabled for interface consistency and to indicate that the game has been complete.

public

i

vold CheckForwing) check if the player has won and display congratulory

/If the display string does

= if (placeholders. contams(

{

] //Disable
a.Enabled
b.Enabled
C.Enabled
d.Enabled
e.Enabled
f.Enabled
g.Enabled
h.Enabled
i.Enabled
j.Enabled
k.Enabled
1.enabled
m.Enabled
n.Enabled
o.Enabled
p-Enabled
q.Enabled
r.Enabled
5 .Enabled
t.Enabled
u.Enabled
v.Enabled
w.Enabled
x.Enabled
y.Enabled
Z.Enabled

DEACTIVATEBUTTONS()

Designed to run when the player has one or lost, this module disables all of the buttons on the on-screen
keyboard to emphasise that the game is over. This aesthetic feature also contributes to the consistency of
gameplay as every time a letter is chosen, that button is disabled. This means it makes sense for the entire

keyboard to be disabled when no more letters can be chosen.

32

*Display wind nfirmation” confirming tien =
If the re of this dialogue bo 0, enable the user to return to hangman by cancelling FormClosingEventArgs" event
= if {MessageBox.Show("Are you sure you wanmt to exit?", "Close Confirmation", MessapeBoxButtons.yesNo) == DialogResult.no)
{
| ffcancel the "For gs', otherwise it will not be and the a ill quit
e.Cancel = true;
| }
|]
FORMCLOSE()

This event protects the exit button from being used accidentally and the program shutting down. While it wasn’t specific in the program requirements, it makes the program
interface more coherent as the restart button has a dialogue box pop-up so it only makes sense that closing the application is secured in a similar way. A dialogue box pops up
and if the user selects yes, then the software will not be interception and close but if the user choses no, the close event will be cancelled and the application remain running.

= private wvold ResetButton Click(object sender, EventArgs e) //Reset game (same functionality as start
i
—l. if (MessageBox.Show("Are you sure you want to restart?”, "Restart Confirmation™, MessageBoxButtons.yvesMo) == DialogResult.yes)
i
Make the purple states the correct word (if i
correctword.visi
ffcall start functi t the game - this mainly gi or an add to prevent the repeated selection of ds
start();
¥
H
H
I

RESTARTBUTTON_CLICK()

The final module of the program is the restart button as required in the project outline. This is a simple and sleek solution to the problem and continues the overall program
aesthetic. When the restart button is clicked, to protect accidental use a dialogue box similar to the FormClose() module appears which asks “Are you sure you want to restart?”. If
the user selects Yes, then as a precaution the correct word which is appears if the player has lost disappears, and then the start function is called again. The game then restarts and

application has successfully achieved all of the requirements detailed.

Implementation Errors

Implementation issues are runtime, syntax and logic errors which occur during development of
the application code. During the programming stage, several errors were encountered
particularly involving the visuals and interface which the algorithms could not sufficiently
consider. While the client stated reproduction of the errors to provide screenshots in this

section was not necessary, the encountered errors are described below:

Numerous logical errors occurred due to values which were accidentally set incorrectly in
implementation. For instance, the display picture on incorrect guess behaved unexpectedly at
first as the number of attempts was accidentally set to 13 instead of 11, creating a logic error.
However, by returning to the code, this obvious error was noticed and adjusted appropriately to
trigger at 11, resolving the issue. A similar issue occurred in the FailedGuess() function where it
was accidentally set to -= 2, which caused the switch case to trigger incorrectly. Though this issue
was more complicated than an incorrect value, another logic error occurred in the
.Remove().Insert() methods where the letter would not be replaced. By engaging in extensive
research into the two methods, it was revealed that the first value in the parameter of .Remove()
is the starting position, then the second value counts how many is removed from that. This
corrected the assumption that .Remove() removed from value 1 to value 2, changing from

.Remove(position, position + 1) to .Remove(position, 1).

The most significant issue faced was likely the .gif images which unexpectedly looped. When the
graphics were first implemented, this problem hadn’t yet emerged as only the static hangman

images had been inserted (and as the Gantt chart illustrates, placeholder images were used at

33

first). However, during the development of the first ‘cut-screen’, the .gif infinite loop was
exposed. At first, the gif was supposed to loop once then return to the gameplay screen,
however, this issue meant that the player could not progress. At first solutions to this error
involved altering the export settings of the .gif image file to loop ‘only once’. However, through
thorough research, it was revealed that ongoing looping is an inherent feature in Windows Forms
Applications. The obvious solution to this error was to implement code which simply made the gif
disappear with a Thread.Sleep() after it had looped once. However, this problem was
complicated by the fact that Thread.Sleep() from the System.Threading package cannot be used
because the method blocks the user-interface thread. This means the gif is prevented from
updating as well so to simply wait the duration of one .gif loop and then hide the picture box

would cause the .gif to loop not play.

Ultimately, | discovered that the ‘enabled’ property of a picture box could pause a gif. This
introduced the solution of adding a ‘next’ button that would turn ‘enabled’ to false when
pressed. This meant the gif would keep looping until the player was ready to progress and
prompted the implementation of the seamless cutscene idea. To further enhance the looping
animation of the hangman being drawn, the .gif image file itself was adjusted to pause once the
body part was drawn then add a ‘blinking” animation before repeating. This enabled a much
smoother visual effect. Although this issue posed a major complication during testing stages, it
ultimately improved the user-experience past its original ideas.

Multiple other errors were faced during development. One of these was a logic error where the
‘" placeholders variable would continually combine in the textbox, rather than clearing. As
mentioned in the ‘Ideas Generation’ and ‘Implementation’ sections, the placeholders variable is
created by += ‘_’ for each letter in the target word. However, by inserting a breakpoint and
following the value of the variables, it was exposed that the += meant it was continually adding
to the previous string. By re-initialising the placeholders variable in the ChooseWord() function,
this error was solved. Another issue was a syntax error where | had forgotten how to define a

switch case. However, his was swiftly resolved by revising the syntax.

One final implementation error was faced in the code which replaced the placeholder with the
letter if the player’s guess was correct. Originally, the spaces were inserted in the placeholder to

create a string like: “

”,then the .Insert() and .Remove() methods were used. This would
mean that .Remove(position, 2).Insert(position, S”{guessedLetter}” should have been used.
However, this was not realised at first and a complicated for loop was designed — which did not
work at all. To avoid this issue completely, instead the string was used with no spaces (“___”) and
then the spaces were added in after seen in the AddSpacesForDisplay() function. Ultimately, this

error actually led to a more readable solution.

Overall, several syntax and logic errors were encountered during the implementation of sthe
code. However, runtime errors were generally minimal as the modules were guarded against
these types’ errors — for instance — the algorithm structure made it impossible to submit an

empty guess. The guidance provided by the algorithms and the structured approach allowed

effective solutions to be reached, at times even bettering the existing code.

34

Testing of code

Throughout the development process of the application, continuous testing was conducted
following the implementation of any new module once they appeared to be completed. Firstly,
the game would be completely played through with the new module to ensure none of the
modules conflicted with the added segment. This also confirmed that the module worked
correctly. Once the module had been sufficiently tested for flaws, | employed the assistance of a
family member to test its boundaries. As each distinct user has a unique approach to the game,
this play-testing step is vital to any program. Majority of the time the module worked as
expected given the well-planned interface and solution. However, if the module behaved
unexpectedly or an error occurred, the code was firstly checked for any obvious mistakes. If the
issue continued then a breakpoint was inserted. Three significant issues were discovered during

the continuous testing of the code:

1. At first, an issue occurred during testing when the player could enter an empty guess selection.
While the submit guess button would not let the player submit if an invalid guess was made,
testing of the function found that it appeared in the user interface like a program error. The play-
testers also agreed with this conclusion. Instead, the module was adjusted and the submit button
was visually disabled when no guess was evident. While this required further refining to ensure
that the button was disabled when there were actually no words, it was an accurate solution to
the issue. This was solved by employing a technique where the project was duplicated and
started in a completely different Windows Forms application. This reduced the pressure of
designing a solution as there was a clear checkpoint to return to.

2. During the initial testing stages of the program, a major issue was discovered. Every target
word up until testing by my family somehow involved words with no duplication of letters.
However, during one of the first play-throughs the word ‘U M BR E L L A” was the target word.
The testing exposed a critical flaw in the logic of the program as only one of the placeholders was
replaced with an ‘L’. This happened because the position was originally stored in a single integer
variable, so only the position of the last occurrence was stored and changed. After inserting a
breakpoint to carefully follow the flow of data and understand the context of the issue, the use
of a list became obvious. This list could then cycle through each position that matched, which

would allow words with repeated letters to reveal the letters correctly.

3. Arather unique issue which was revealed during testing was the impact of full screen mode on
the interface. From the thorough testing by the external testers, one had attempted to full
screen the application. This produced a surprising result and, in effect, ‘broke’ the interface and
its overall effect. Through thorough research into how to prevent Windows Form applications
from being launched in full screen, the FormBorderStyle property was discovered. This was an
ideal solution as it removed the full screen option all together (preventing it appearing like a

program error) and created a memorable form application.

&

HANGMAN
RN

8

HANGMAN

35

TESTING AND EVALUATION | rorBoDY

Testing

To effectively conduct testing before release, the finalised version of the modules should undergo
rigorous testing with an extensive range of test data. If these functions had required a user input, this
could have been tested with a desk check. However, performing a desk check is difficult as the modules
are already guarded from invalid inputs. Future improvements, the development of each module, and
this justification for lack of test data is elaborated on below:

Formi()

No test data is required to test the boundaries of this module as it only serves to call other functions.

However, testing can be performed by executing the module and checking its behaviour, and it clearly
works as intended.

INPUT EXPECTED OUTPUT OUTPUT

Application begins Form loaded and the main gameplay = Form loaded and the main gameplay

elements are invisible elements are invisible

Makelnvisible()

The use of rigorous test data is not applicable for this module as it simply makes interface elements
invisible and there is no user input to test. However, testing can be performed by executing the module
and checking its behaviour, and it clearly works as intended.

INPUT EXPECTED OUTPUT OUTPUT

Main gameplay elements are Main gameplay elements are hidden = Main gameplay elements are hidden

visible

StartButton_Click()

The use of rigorous test data is not applicable for this module as it simply reads a mouse click input.

However, testing can be performed by executing the module and checking its behaviour, and it clearly
works as intended.

INPUT EXPECTED OUTPUT OUTPUT

Start button clicked Start function called successfully Start function called successfully

(indicated by start events executing) | (indicated by start events executing)

Start()

The use of rigorous test data is not applicable for this module as it simple makes interface elements
invisible and there is no input to test. However, testing can be performed by executing the module and
checking its behaviour, and it clearly works as intended.

36

INPUT

GuesseslLeft

No elements displayed on the
interface

No guesses or gameplay active

LoadingScreen()

EXPECTED OUTPUT

Seamless ‘loading screen’ transition
Set/reset guesses

Prevent gif from looping in
background

Allow use of submit and delete
button

Prepare for gameplay interface

OUTPUT

Seamless ‘loading screen’ transition

Set/reset guesses

Prevent gif from looping in
background

Allow use of submit and delete
button

Prepare for gameplay interface

The use of rigorous test data is not applicable for this module as it simply calls other events and displays

objects thus there is no input to test. However, testing can be performed by executing the module and

checking its behaviour, and it clearly works as intended.

INPUT

Current program interface

EXPECTED OUTPUT

Seamless loading screen transition

Gameplay interface displayed for use

OUTPUT
Seamless loading screen transition

Gameplay interface displayed for use

MakeVisible()

The use of rigorous test data is not applicable for this module as it simply makes interface elements

visible and there is no input to test. However, testing can be performed by executing the module and
checking its behaviour, and it clearly works as intended.

INPUT

All gameplay interface elements

are invisible

EXPECTED OUTPUT

All gameplay elements are displayed

OUTPUT

All gameplay elements are displayed

SelectTargetWord()

The use of rigorous test data is not applicable for this module as it always reads in a word and there is no
unexpected input to test. The main test data which would be used here was if no word was chosen, as
creating the placeholders would not work. However — there will always be a word due to the structure of
the program. This makes test data from a desk check of no use. Testing can however be performed by
executing the module and checking its behaviour, and it clearly works as intended.

AddSpacesForDisplay()

DATA ITEM: TargetWord EXPECTED OUTPUT REASON FOR INCLUSION
“Bob” “Bob” Shorter word to test spaces are still inserted when

there are more letters

“Daffodil” “Daffodil” Longer word to test spaces are still inserted when

there are more letters
Test if a program error occurs and no string is
inputted to get spaces inserted

T

vate void AddSpacesForDisplay()

I char[] splitPlaceholders = placeholders.ToCharArray();
~ing display = "7

for {int i = @; i < placeholders.Count(); i++)
i

I display += splitPlaceholders[i] + " ";
T

placeholderDisplay.Text = display;

¥

placeholders splitPlaceholders Display i Placeholders.Count splitPlaceholders[i] placeholderDisplay.Text

placeholders splitPlaceholders Display i Placeholders.Count() splitPlaceholders[i] placeholderDisplay.Text
“Daffodil” {D,a,f,f,0,d,i,I} p-

s u

“Daffodil”

placeholders splitPlaceholders Display i Placeholders.Count splitPlaceholders[i] pIacehoIderDispIay.Text‘

This rigorous data testing clearly exposes the potentials for an error if an empty word is chosen to have

spaces inserted in between. However, this is prevented from ever occurring by the structure of the

program as the module is never called unless placeholder has already been assigned. This was the main

38

issue regarding thorough testing as the function is already guarded from an invalid input. This brief test
data does, however, also illustrate the successful functioning of the module.

ActivateButtons()

The use of rigorous test data is not applicable for this module as it simply enables the interface elements
visible and there is no input to test. However, testing can be performed by executing the module and

checking its behaviour, and it clearly works as intended.

INPUT EXPECTED OUTPUT OUTPUT

All buttons are deactivated All buttons on the on-screen All buttons on the on-screen

keyboard are activated keyboard are activated

Letter_Click()

The use of rigorous test data is not applicable for this function as it simply reads the letter pressed and
converts it to character so there is no unexpected input to test. The fact that a letter must be clicked
guards the function from the most likely error of no letter being entered (which would throw an error
when converting an empty string). This means test data has little use. However, testing can be performed

by executing the module and checking its behaviour, and it clearly works as intended.

INPUT EXPECTED OUTPUT OUTPUT

Button of letter played guessed Text box displays the letter the player = Text box displays the letter the

has chosen player has chosen

DeleteButton_Click()

The use of rigorous test data is not applicable for this module as it simply clears the textbox and there is
no unexpected input to test. However, testing can be performed by executing the module and checking
its behaviour, and it clearly works as intended.

INPUT EXPECTED OUTPUT OUTPUT

Delete button clicked Remove any letter chosen so no Remove any letter chosen so no

guess is currently active guess is currently active

SubmitButton_Click()

The use of rigorous test data is not applicable for this module as it simply checks if there is text thus there
is no unexpected input to test. However, testing can be performed by executing the module and checking

its behaviour, and it clearly works as intended.

INPUT EXPECTED OUTPUT OUTPUT

Submit button clicked Guess is made and processed. Guess is made and processed.

39

SubmitGuess()

The use of rigorous test data is not applicable for this module as it is guarded against any potential errors.
This is similar to the previous AddSpacesForDisplay() desk check, where an error would obviously be
thrown if no letter was submitted to be guessed or if there was no target word. However, because of the
structure of the application and how it disables the submit button if no guess is currently made, this
testing is redundant. Further, the SelectTargetWord module is always called before the player can sub,it a
guess, so there will always be a word to compare it against. However, testing can still be performed by

executing the module and checking its behaviour, and it clearly works as intended.

INPUT EXPECTED OUTPUT OUTPUT

Letter player guessed If the guess was correct, reveal the If the guess was correct, reveal the

Target word letter in the placeholders string letter in the placeholders string
If the guess was incorrect, a hangman | If the guess was incorrect, a
body part should appear and a guess | hangman body part should appear
left subtract and a guess left subtract
Disable submit and delete button (as | Disable submit and delete button (as
a guess was just submitted so no a guess was just submitted so no
guess made yet) guess made yet)
Loading face interface (to increase Loading face interface (to increase

suspense) suspense)

FailedGuess()

The use of rigorous test data is not applicable for this module as it simply subtracts 1 from guessesLeft
then calls two functions so there is no unexpected input to test. However, testing can be performed by

executing the module and checking its behaviour, and it clearly works as intended.

INPUT EXPECTED OUTPUT OUTPUT
Number of guesses left One less guess left One less guess left
Loading screen interface Indicate a life was lost Indicate a life was lost
If the player has lost, display loss If the player has lost, display loss

interface interface

40

PlayAnimation()

The use of rigorous test data is not applicable for this module as it is a
simple switch case which reads guessesLeft so there is no unexpected

input to test. Additionally, the structure of the program means

guessesLeft always has a value, for instance, if the program is reset,

the number of guesses is reset too allowing the variable to continue

working. However, testing can be performed by executing the module

and checking its behaviour, and it clearly works as intended. Further,

the graphics work successfully which indicate that the correct switch

case has been entered. Inserting a break point serves to ensure that

these cases work correctly.

e — Properties.Resource

% -

wtos -1

(] p- SearchDepth: 3 - Y A

Name Value Type

» @ {System.Windows Forms.PictureBor, SizeMode: Nor... System Windo.

» g = Bitmap) System Drawin
@, guessesLeft 10 int

INPUT

Loading screen interface

EXPECTED OUTPUT

Animated ‘drawing’ cut-screen of the
hangman body part according to
number of guesses left

‘Next’ button for when user is ready

to make their next guess

OUTPUT

Animated ‘drawing’ cut-screen of the
hangman body part according to
number of guesses left

‘Next’ button for when user is ready

to make their next guess

NextButton_Click()

The use of rigorous test data is not applicable for this module as the structure of the program means

guessesLeft always has a value, so performing a desk check is redundant. However, testing can be

performed by executing the module and checking its behaviour, and it clearly works as intended. Further,

the correct graphic is displayed which indicates that the correct switch case has been entered. Inserting a

break point serves to ensure that these cases work correctly.

INPUT
Next button clicked

CheckForLoss()

EXPECTED OUTPUT

Interface returns to gameplay
interface

Static image is included on the
interface which changes according to

number of guesses left

Display loss interface (specifically

once the next has been clicked)

OUTPUT

Interface returns to gameplay
interface

Static image is included on the
interface which changes according to
number of guesses left

Display loss interface (specifically

once the next has been clicked)

The use of rigorous test data is not applicable for this module as it simply checks if guessesLeft is less than

1 so there is no unexpected input to test. However, testing can be performed by executing the module

and checking its behaviour, and it clearly works as intended.

41

INPUT EXPECTED OUTPUT OUTPUT
Number of guesses left Provide condolence message Provide condolence message
Disable on-screen keyboard (as loss Disable on-screen keyboard (as loss

has occurred) has occurred)

CheckForWin()

The use of rigorous test data is not applicable for this module as it simply checks if placeholders contain
underscore and the only error would be if there was no underscore. The program is guarded from this
error due to its structure however, as placeholders always contains a word. However, testing can be

performed by executing the module and checking its behaviour, and it clearly works as intended.

INPUT Provide congratulatory message OUTPUT

Placeholders string Disable on-screen keyboard (as win Provide congratulatory message

has occurred) Disable on-screen keyboard (as win

has occurred)

DeactivateButtons()

The use of rigorous test data is not applicable for this module as it simply disables the interface element
and there is no input to test. However, testing can be performed by executing the module and checking
its behaviour, and it clearly works as intended.

INPUT EXPECTED OUTPUT OUTPUT

All buttons are activated All buttons on the on-screen All buttons on the on-screen

keyboard are deactivated keyboard are deactivated

FormClose()

The use of rigorous test data is not applicable for this module as it simply displays a message box with
two options so there is no unexpected input to test. However, testing can be performed by executing the

module and checking its behaviour, and it clearly works as intended.

INPUT EXPECTED OUTPUT OUTPUT

Form closing Protects form from being accidentally = Protects form from being

closed accidentally closed

ResetButton_Click()

The use of rigorous test data is not applicable for this module as it simply displays a message box with
two options so there is no unexpected input to test. However, testing can be performed by executing the

module and checking its behaviour, and it clearly works as intended.

42

INPUT EXPECTED OUTPUT OUTPUT
Reset button clicked Gameplay cannot be accidentally Gameplay cannot be accidentally
reset reset

Restarts game Restarts game

Evaluation

Overall, | believe the thorough planning of the structured approach has enabled the developed
product to effectively and efficiently fulfil the initial requirements. As demonstrated in the above
‘Testing’ section, the program successfully achieves its expected outputs. The produced solution
and overall project can then be evaluated by comparing these results against the initial
requirements defined in the ‘identification of the problem’ section. These requirements were
succinctly articulated into the following points in the ‘Understanding and Defining Problem
Section’:

— Produce a working graphical user-interface game of Hangman, or alternatively Snowman, designed to run in a Windows form
application

The proposed application undoubtably delivers on the project’s purpose, creating a working
graphical user interface game of the traditional Hangman. The software’s mechanics outlined in
‘functionality’ is clear in the intuitive gameplay of the application, and the interface successfully
serves to enhance the user-experience. Further, the Windows Form application contains distinct
style and flair, creating an immersive gameplay experience. The test data serves to exemplify the
functionality of the program, where performing a desk check typically has minimal use. This is
because the modules are guarded to the point that any data which would even cause any errors
cannot be entered.

— Randomly select a word from a list of words residing in an external text file which the player must guess. This should be hidden.

As witnessed in the testing section, the module is guarded to most errors (providing an external
file is excluded) due to the structure of the program so the program successfully accesses an
external sequential file to read a list of words. This is achieved simplistically and efficiently with
the File.ReadAllLines method which opens, reads the file into a string array and then closes the
file, exposing minimal security threats. The system’s solution to randomly selecting a word by
generating a number which serves as a random index for an element in this list is clean and
readable. Additionally, the use of a for loop to hide the target word beneath a separate string of
underscores was an effective solution and the AddSpacesForDisplay makes it more readable. |

believe this application successfully achieves this requirement in a clear and efficient way.

— If the user guesses an incorrect letter, each body part is to appear or disappear (if Snowman was chosen)

43

Through the use of .gif’s, an extremely distinct and memorable solution was produced to display
the body parts of the hangman when an incorrect guess is made. The product of these animated
images exceeded my original expectation and sufficiently fulfils this requirement. By using a
simple switch case to change the contents of an image box, and by utilising the enable and
disable properties of the picture box, the working of this feature is clean and refined. This clear
function is evident in the PlayAnimation() test data, entering the correct switch case which SETs
the image to the correct file. Combining the .gifs with the static image box created a seamless
interface — allowing the player to immerse themselves in the game when a letter was guessed
wrong but still be able to make a guess depending on how much of the hangman was left. The
‘loading screen’ also serves to enhance this intensifying effort. The test information on the
PlayAnimation() module serves to support its effective solution. Overall, this requirement was

exceeded, and | am extremely satisfied with the implemented solution.

— If the user makes a correct guess, the letter/s must appear in their location in the chosen word

If the user makes a correct guess, by simply splitting the string of targetWord into an array,
comparing the guessed letter against each character, and then adding any positions where they
match to a list, this requirement is successfully fulfilled. As code efficiency is always an important
consideration, the use of only methods .Remove() and .Insert() at each position serve to make
the letter ‘appear’ in a clear and short way. As detailed in the ‘test data’ section, the module
‘SubmitGuess’ is guarded against errors due to the program’s structure. Overall, this is a
streamlined solution and the code itself remains readable— and readability is imperative for
further maintenance.

— Already used letters must be displayed on the screen

The application successfully implements this requirement in a clear and modern solution evident
in the success of the test data. By incorporating the already used letters by disabling their use on
the keyboard, the interface can remain decluttered and user will not get confused why a letter
won’t enter because it is clearly disabled. This system feature is rather unique from the original

broad specification and contributes greatly to the memorability of the product produced.

— If a player successfully solves the word, the game will provide a congratulatory message

Setting the letterGuessed textbox to ‘YOU WIN!' is a clean solution which successfully conveys a
congratulatory message. However, this feature has further potential for a .gif to be displayed, or
the player skip to a cut-screen, but an appropriate graphic to match the aesthetic and keep the
elegant interface was not achieved. Overall though, this potential is simply for aesthetics and the

program requirement was successfully achieved.

44

— If a player runs out of guesses and the final body part appears or disappears (if Snowman was selected) a condolence message
will appear

The evaluation of the condolence message requirement is extremely similar to the
congratulatory message. However, | believe that the unique static image of the hangman with a
‘dead’ emotion and the purple textbox which displays the correct word provides the level of
aesthetics required for these win and lose events. In comparison to the congratulatory message,
the execution of the condolence message exceeds the requirement, though both solve the
original problem.

— A button should be accessible that allows a new game to be played at any time but must be protected from accidental use

The protection for the reset button was well-executed, providing a noticeable yet clean Message
Box which confirms the users choice. This is consistent if the user chooses to exit, where a
message box requesting their confirmation appears. The testing section proves that the message
boxes are successfully triggered. These are extremely clean and refined ways to achieve the

protected restart button which work while seamlessly integrating another feature.

— The project must follow the structured approach and its appropriate documentation in a PDR

The project successfully follows the structured approach and documents the process to great

effect. This is evidenced in the produced Project Development Report.

The system performance clearly fulfills the original requirements laid out in understanding and
defining with a unique and memorable flair. This evaluation is justified by the test data section
which ultimately concludes that the modules are guarded against errors occurring originally.
Providing the program is used appropriately and the external text file has not been adjusted, no
particular security issues arise. Despite the limited portability of Windows Form applications, the
engaging gameplay has the potential to be extended for further platforms with the existing
codebase through use of frameworks. Further, the potential for networkability can overcome
this restriction. While not included in the initial requirements, inclusivity and accessibility of the
software to a broad range of backgrounds has been considered and potential opportunities
identified for further celebration of diversity.

By using input data from only the mouse and the power of C# Windows Form Applications, it is
undeniable that the project delivers a memorable solution. This program fulfils the requirements
laid out in the ‘Understanding and Defining the Problem’ section and brings the traditional game
of Hangman into the technological era.

45

MAINTENANCE OF THE SOFTWARE | ror BopY

Maintenance is imperative to ensuring the longevity of the software application and is provided
by the developer until no longer viable. The readability and clarity of the software solution
produced considers this ongoing development and enables adjustments to be made easily. As
the hangman project has a submission date deadline, ongoing support and extending features of
the program does not have an established time frame. However, there is a number of instances
where maintenance of the program is necessary and the appropriate methods should be taken. A
number of these potentials have been already considered, for instance if the user upgrades their
hardware, such as new monitor, the program interface will continue to open correctly as it has
been created the size of a small screen resolution. Yet several others cannot yet be considered,
such as when Microsoft releases an update to C#. Here, maintenance is necessary to ensure that
the code is compatible to runtime. This can be tested by launching the software application in

the updated version and resolving any complications or unexpected behaviours accordingly.

Another maintenance regard should be made to potential security issues, particularly if Microsoft
discovers any security vulnerabilities with the code or elements used. For instance, if Microsoft
discovers security vulnerabilities in C#, a new SDK and runtime will be released. This means that
the application must be updated to use the new SDK. Similar adjustment applies to
vulnerabilities in the program discovered through client response, where the system should be

adjusted accordingly as well.

Ensuring the longevity of the software also includes potential upgrades and addons for the
program, in particular considering the ongoing adjustments required to sustain player
engagement. As mentioned in the ‘Networkability’ and ‘Portability’ sections, upgrades for this
application could involve the networking and increase of platforms to create differing and unique
versions of the gameplay. For example, by leveraging a web framework such as ASP.Net the
program could implement networking to allow two players to play over the internet and
simultaneously compete for a hidden word. The use of a web server which communicates with
the players’ client machines would enable the application’s output to display on each monitor
while obfuscating the code which could allow cheating. This topology is expanded on in the
‘Networkability’ section. In regards to the migration of the developed package to other hardware
platforms, this could involve extending the existing codebase with the .NET developer platform
Xamarin. This would extend portability to 10S and Android operating systems and with careful
consideration of potential security threats, could ensure the relevance and longevity of the
application. Further, the migration on to other platforms may require adjusting the interface,
however, this can be seen as an opportunity to lead to more engaging and memorable gameplay

ideas.

Add-on suggestions of the existing game itself could elaborate on the current cut-screen and
seamless interface to enhance user-experience and engagement. The application could also be
extended to add a hint button and currency system, increasing the substance of the game.

Additionally, as noted in the ‘Implementation’ section, the solution has opportunity to

46

implement a feature that prevents words being repeated as the target word, however, the large
pool of 200 words should reduce the likelihood of this. Expanded on earlier in the report, the

application provides opportunity for a hint and currency system to be implemented.

Overall, the readability and clarity of the software solution produced allows maintenance and
further upgrades of the program to be completed with ease. While it is arguable that the use of a
Windows Form application is outdated, the produced solution is versatile with rich potential to
expand portability and networkability with the existing codebase. Consistent maintenance and
upgrades of the software can ensure the ongoing longevity of the produced application, and
ultimately enable the traditional game of hangman to continue to educate through the test of

time.

&

47

